Suppr超能文献

治疗干预多维截断的多元高斯分布纵向定量结果的方法。

Methods for a longitudinal quantitative outcome with a multivariate Gaussian distribution multi-dimensionally censored by therapeutic intervention.

机构信息

Division of Biometrics VI, Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, U.S.A.

出版信息

Stat Med. 2014 Apr 15;33(8):1288-306. doi: 10.1002/sim.6037. Epub 2013 Nov 21.

Abstract

In longitudinal studies, a quantitative outcome (such as blood pressure) may be altered during follow-up by the administration of a non-randomized, non-trial intervention (such as anti-hypertensive medication) that may seriously bias the study results. Current methods mainly address this issue for cross-sectional studies. For longitudinal data, the current methods are either restricted to a specific longitudinal data structure or are valid only under special circumstances. We propose two new methods for estimation of covariate effects on the underlying (untreated) general longitudinal outcomes: a single imputation method employing a modified expectation-maximization (EM)-type algorithm and a multiple imputation (MI) method utilizing a modified Monte Carlo EM-MI algorithm. Each method can be implemented as one-step, two-step, and full-iteration algorithms. They combine the advantages of the current statistical methods while reducing their restrictive assumptions and generalizing them to realistic scenarios. The proposed methods replace intractable numerical integration of a multi-dimensionally censored MVN posterior distribution with a simplified, sufficiently accurate approximation. It is particularly attractive when outcomes reach a plateau after intervention due to various reasons. Methods are studied via simulation and applied to data from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study of treatment for type 1 diabetes. Methods proved to be robust to high dimensions, large amounts of censored data, low within-subject correlation, and when subjects receive non-trial intervention to treat the underlying condition only (with high Y), or for treatment in the majority of subjects (with high Y) in combination with prevention for a small fraction of subjects (with normal Y).

摘要

在纵向研究中,非随机、非试验干预(如抗高血压药物)的实施可能会改变随访期间的定量结果(如血压),从而严重影响研究结果。目前的方法主要针对横断面研究解决这个问题。对于纵向数据,目前的方法要么仅限于特定的纵向数据结构,要么仅在特殊情况下有效。我们提出了两种新的方法来估计协变量对未处理的一般纵向结果的影响:一种是使用改进的期望最大化(EM)类型算法的单值插补方法,另一种是利用改进的蒙特卡罗 EM-MI 算法的多值插补(MI)方法。每种方法都可以作为一步法、两步法和完全迭代算法来实现。它们结合了当前统计方法的优势,同时减少了其限制性假设,并将其推广到现实场景中。所提出的方法用简化的、足够准确的近似值替代了多维截断 MVN 后验分布的难以处理的数值积分。当由于各种原因,干预后结果达到平台期时,它特别有吸引力。该方法通过模拟进行研究,并应用于 1 型糖尿病治疗的糖尿病控制和并发症试验/糖尿病干预和并发症的流行病学研究的数据。该方法在高维、大量删失数据、低个体内相关性以及当个体仅接受非试验干预来治疗基础疾病(Y 值高)时,或者当大多数个体(Y 值高)接受治疗时,对小部分个体(Y 值正常)进行预防时,都表现出很强的稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验