Suppr超能文献

环境暴露诱导的 DNA 损伤修复过程中的染色质修饰:一种潜在的稳定表观遗传改变的机制。

Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations.

机构信息

Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana.

出版信息

Environ Mol Mutagen. 2014 Apr;55(3):278-91. doi: 10.1002/em.21830. Epub 2013 Nov 20.

Abstract

Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.

摘要

环境毒物和毒素的暴露会导致表观遗传变化,这些变化可能在与暴露相关的疾病发展中发挥作用。这些暴露引起的表观遗传变化背后的机制目前尚不清楚。大多数环境暴露的一个共同点是,它们要么直接导致 DNA 损伤,要么通过增加活性氧物种(ROS)导致 DNA 损伤,ROS 可以破坏 DNA。与转录一样,DNA 损伤修复必须在染色质的背景下发生,这需要组蛋白修饰和 ATP 依赖性染色质重塑。这些染色质变化有助于 DNA 损伤的可及性和信号转导。在发育和癌症过程中涉及表观遗传沉默的几种蛋白质和复合物已被发现定位于 DNA 损伤部位。考虑到 DNA 损伤修复完成后,染色质会恢复正常,因此染色质对 DNA 损伤的反应被认为是一种瞬时事件。然而,在长期暴露于环境毒物或患有慢性炎症性疾病的个体中,反复的 DNA 损伤诱导的染色质重排最终可能导致永久性的表观遗传改变。了解暴露引起的表观遗传变化背后的机制将使我们能够开发预防或逆转这些变化的策略。本综述重点介绍了环境暴露引起的表观遗传变化和 DNA 损伤、DNA 损伤部位周围发生的染色质变化,以及这些短暂的染色质变化如何导致慢性暴露部位的可遗传表观遗传改变。

相似文献

2
The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases.
Mutat Res Rev Mutat Res. 2019 Apr-Jun;780:69-81. doi: 10.1016/j.mrrev.2017.09.005. Epub 2017 Sep 28.
4
Histone variants in environmental-stress-induced DNA damage repair.
Mutat Res Rev Mutat Res. 2019 Apr-Jun;780:55-60. doi: 10.1016/j.mrrev.2017.11.002. Epub 2017 Nov 21.
5
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
6
Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair.
Int J Mol Sci. 2019 Aug 22;20(17):4093. doi: 10.3390/ijms20174093.
7
Signals and combinatorial functions of histone modifications.
Annu Rev Biochem. 2011;80:473-99. doi: 10.1146/annurev-biochem-061809-175347.
8
Non-coding RNAs as direct and indirect modulators of epigenetic regulation.
Epigenetics. 2014 Jan;9(1):3-12. doi: 10.4161/epi.27473.

引用本文的文献

4
Cell-Free DNA As Peripheral Biomarker of Alzheimer's Disease.
Aging Dis. 2024 Mar 29;16(2):787-803. doi: 10.14336/AD.2024.0329.
5
Epigenetic Mechanisms of Aging and Aging-Associated Diseases.
Cells. 2023 Apr 14;12(8):1163. doi: 10.3390/cells12081163.
6
CK2 and the Hallmarks of Cancer.
Biomedicines. 2022 Aug 16;10(8):1987. doi: 10.3390/biomedicines10081987.
7
Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review.
Mutat Res Rev Mutat Res. 2022 Jan-Jun;789:108408. doi: 10.1016/j.mrrev.2021.108408. Epub 2021 Dec 9.
8
Novel acetylation-related gene signatures for predicting the prognosis of patients with colorectal cancer.
Hum Cell. 2022 Jul;35(4):1159-1173. doi: 10.1007/s13577-022-00720-6. Epub 2022 May 23.
9
Structural and functional specificity of H3K36 methylation.
Epigenetics Chromatin. 2022 May 18;15(1):17. doi: 10.1186/s13072-022-00446-7.
10
Targeting Cell Death Mechanism Specifically in Triple Negative Breast Cancer Cell Lines.
Int J Mol Sci. 2022 Apr 26;23(9):4784. doi: 10.3390/ijms23094784.

本文引用的文献

1
Chromatin proteins and modifications as drug targets.
Nature. 2013 Oct 24;502(7472):480-8. doi: 10.1038/nature12751.
2
MicroRNAs in cancer.
Annu Rev Pathol. 2014;9:287-314. doi: 10.1146/annurev-pathol-012513-104715. Epub 2013 Sep 25.
3
The dynamics of DNA damage repair and transcription.
Methods Mol Biol. 2013;1042:227-35. doi: 10.1007/978-1-62703-526-2_16.
4
At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence.
Front Genet. 2013 Jul 26;4:136. doi: 10.3389/fgene.2013.00136. eCollection 2013.
5
Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation.
Mutat Res. 2013 Oct;750(1-2):23-30. doi: 10.1016/j.mrfmmm.2013.07.002. Epub 2013 Aug 6.
6
Polycomb repressive complex 2 contributes to DNA double-strand break repair.
Cell Cycle. 2013 Aug 15;12(16):2675-83. doi: 10.4161/cc.25795. Epub 2013 Jul 29.
7
A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks.
J Biol Chem. 2013 Sep 13;288(37):26944-54. doi: 10.1074/jbc.M113.461699. Epub 2013 Jul 30.
8
Radiation-induced epigenetic DNA methylation modification of radiation-response pathways.
Epigenetics. 2013 Aug;8(8):839-48. doi: 10.4161/epi.25498. Epub 2013 Jun 27.
9
Epigenetics meets radiation biology as a new approach in cancer treatment.
Int J Mol Sci. 2013 Jul 18;14(7):15059-73. doi: 10.3390/ijms140715059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验