Proteomics Clin Appl. 2014 Feb;8(1-2):73-85. doi: 10.1002/prca.201300066.
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.
唐氏综合征(DS)是最常见的智力障碍的遗传原因之一,其特征是多种病理表型,其中神经退行性变是一个关键特征。DS 的神经病理学较为复杂,可能是由于线粒体功能受损、氧化应激增加和蛋白质稳态改变所致。40 岁以后,许多(大多数)DS 个体会发展为一种类似于阿尔茨海默病的痴呆症,其特征是老年斑和神经纤维缠结的沉积。许多研究表明,氧化损伤增加、受损/错误折叠的蛋白聚集体积累以及细胞内降解系统功能障碍是神经退行性过程中的关键事件。这篇综述总结了目前的知识,表明 DS 中存在“慢性”氧化应激状态,指出了可能导致认知和记忆能力下降加速的潜在分子途径。蛋白质组学和氧化还原蛋白质组学研究是揭示 DS 表型复杂性的有力工具,通过这些研究可以确定蛋白表达变化和氧化 PTM,这些变化被证明对蛋白功能有害。合理的假设是,DS 神经元中细胞内氧化还原状态的变化,早在胎儿期就已经发生,可能为衰老增加促进神经退行性变提供了有利的环境。因此,在临界年龄之后,DS 神经病理学可以被认为是人类早期阿尔茨海默病的模型,并有助于理解从正常衰老到痴呆发展的重叠机制。