Suppr超能文献

注意力提高了视觉大脑中预期和意外感知之间的区别。

Attention sharpens the distinction between expected and unexpected percepts in the visual brain.

机构信息

Center for Cognitive Neuroscience and Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708, and Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom.

出版信息

J Neurosci. 2013 Nov 20;33(47):18438-47. doi: 10.1523/JNEUROSCI.3308-13.2013.

Abstract

Attention, the prioritization of goal-relevant stimuli, and expectation, the modulation of stimulus processing by probabilistic context, represent the two main endogenous determinants of visual cognition. Neural selectivity in visual cortex is enhanced for both attended and expected stimuli, but the functional relationship between these mechanisms is poorly understood. Here, we adjudicated between two current hypotheses of how attention relates to predictive processing, namely, that attention either enhances or filters out perceptual prediction errors (PEs), the PE-promotion model versus the PE-suppression model. We acquired fMRI data from category-selective visual regions while human subjects viewed expected and unexpected stimuli that were either attended or unattended. Then, we trained multivariate neural pattern classifiers to discriminate expected from unexpected stimuli, depending on whether these stimuli had been attended or unattended. If attention promotes PEs, then this should increase the disparity of neural patterns associated with expected and unexpected stimuli, thus enhancing the classifier's ability to distinguish between the two. In contrast, if attention suppresses PEs, then this should reduce the disparity between neural signals for expected and unexpected percepts, thus impairing classifier performance. We demonstrate that attention greatly enhances a neural pattern classifier's ability to discriminate between expected and unexpected stimuli in a region- and stimulus category-specific fashion. These findings are incompatible with the PE-suppression model, but they strongly support the PE-promotion model, whereby attention increases the precision of prediction errors. Our results clarify the relationship between attention and expectation, casting attention as a mechanism for accelerating online error correction in predicting task-relevant visual inputs.

摘要

注意,目标相关刺激的优先级和预期,即概率上下文对刺激处理的调制,代表了视觉认知的两个主要内源性决定因素。视觉皮层的神经选择性增强了注意力和预期的刺激,但这些机制之间的功能关系尚不清楚。在这里,我们对注意与预测处理的关系的两种当前假设进行了裁决,即注意要么增强还是过滤感知预测误差(PE),PE 促进模型与 PE 抑制模型。我们在人类受试者观看预期和意外刺激时,从类别选择性视觉区域获取 fMRI 数据,这些刺激既可以被注意也可以不被注意。然后,我们训练多元神经模式分类器根据这些刺激是被注意还是未被注意,来区分预期和意外的刺激。如果注意促进了 PEs,那么这应该增加与预期和意外刺激相关的神经模式的差异,从而提高分类器区分两者的能力。相反,如果注意抑制了 PEs,那么这应该减少预期和意外感知之间的神经信号差异,从而损害分类器的性能。我们证明,注意以区域和刺激类别特异性的方式极大地增强了神经模式分类器区分预期和意外刺激的能力。这些发现与 PE 抑制模型不一致,但强烈支持 PE 促进模型,即注意增加了预测误差的精度。我们的结果阐明了注意与预期之间的关系,将注意作为加速预测任务相关视觉输入的在线错误校正的机制。

相似文献

4
Perceptual expectation evokes category-selective cortical activity.感知预期会引起类别选择性的皮质活动。
Cereb Cortex. 2010 May;20(5):1245-53. doi: 10.1093/cercor/bhp188. Epub 2009 Sep 16.
5
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.视觉预测误差在人类视觉皮层的对象特征间传播。
J Neurosci. 2016 Dec 14;36(50):12746-12763. doi: 10.1523/JNEUROSCI.1546-16.2016. Epub 2016 Nov 3.

引用本文的文献

5
Confidence and second-order errors in cortical circuits.皮质回路中的置信度与二阶误差
PNAS Nexus. 2024 Sep 13;3(9):pgae404. doi: 10.1093/pnasnexus/pgae404. eCollection 2024 Sep.
6
Sound category habituation requires task-relevant attention.声音类别习惯化需要与任务相关的注意力。
Front Neurosci. 2023 Oct 24;17:1228506. doi: 10.3389/fnins.2023.1228506. eCollection 2023.

本文引用的文献

1
Attention is spontaneously biased toward regularities.注意会自动偏向规律。
Psychol Sci. 2013 May;24(5):667-77. doi: 10.1177/0956797612460407. Epub 2013 Apr 4.
3
Canonical microcircuits for predictive coding.用于预测编码的规范微电路。
Neuron. 2012 Nov 21;76(4):695-711. doi: 10.1016/j.neuron.2012.10.038.
10
Statistical learning of visual transitions in monkey inferotemporal cortex.猴子下颞叶皮层中视觉转换的统计学习。
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19401-6. doi: 10.1073/pnas.1112895108. Epub 2011 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验