文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

rSeqDiff:使用层次似然比检验从 RNA-Seq 数据中检测差异异构体表达。

rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America.

出版信息

PLoS One. 2013 Nov 18;8(11):e79448. doi: 10.1371/journal.pone.0079448. eCollection 2013.


DOI:10.1371/journal.pone.0079448
PMID:24260225
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3832546/
Abstract

High-throughput sequencing of transcriptomes (RNA-Seq) has recently become a powerful tool for the study of gene expression. We present rSeqDiff, an efficient algorithm for the detection of differential expression and differential splicing of genes from RNA-Seq experiments across multiple conditions. Unlike existing approaches which detect differential expression of transcripts, our approach considers three cases for each gene: 1) no differential expression, 2) differential expression without differential splicing and 3) differential splicing. We specify statistical models characterizing each of these three cases and use hierarchical likelihood ratio test for model selection. Simulation studies show that our approach achieves good power for detecting differentially expressed or differentially spliced genes. Comparisons with competing methods on two real RNA-Seq datasets demonstrate that our approach provides accurate estimates of isoform abundances and biological meaningful rankings of differentially spliced genes. The proposed approach is implemented as an R package named rSeqDiff.

摘要

转录组高通量测序(RNA-Seq)最近已成为研究基因表达的有力工具。我们提出了 rSeqDiff,这是一种用于检测多个条件下 RNA-Seq 实验中基因差异表达和差异剪接的高效算法。与现有检测转录物差异表达的方法不同,我们的方法考虑了每个基因的三种情况:1)无差异表达,2)无差异剪接的差异表达,3)差异剪接。我们指定了描述这三种情况的统计模型,并使用分层似然比检验进行模型选择。模拟研究表明,我们的方法在检测差异表达或差异剪接基因方面具有良好的功效。在两个真实的 RNA-Seq 数据集上与竞争方法的比较表明,我们的方法提供了准确的异构体丰度估计和差异剪接基因的有意义的生物学排序。所提出的方法实现为一个名为 rSeqDiff 的 R 包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/d50b377c7ddc/pone.0079448.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/6c4c1c07dfc9/pone.0079448.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/3606e069d14e/pone.0079448.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/8d8b212a98e4/pone.0079448.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/a6dc7efb99a0/pone.0079448.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/d50b377c7ddc/pone.0079448.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/6c4c1c07dfc9/pone.0079448.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/3606e069d14e/pone.0079448.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/8d8b212a98e4/pone.0079448.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/a6dc7efb99a0/pone.0079448.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/3832546/d50b377c7ddc/pone.0079448.g005.jpg

相似文献

[1]
rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test.

PLoS One. 2013-11-18

[2]
rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.

Bioinformatics. 2015-7-1

[3]
Identifying differentially spliced genes from two groups of RNA-seq samples.

Gene. 2012-12-8

[4]
Towards reliable isoform quantification using RNA-SEQ data.

BMC Bioinformatics. 2010-4-29

[5]
A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies.

Brief Bioinform. 2019-3-22

[6]
deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies.

BMC Genomics. 2015-6-13

[7]
Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS.

Methods Mol Biol. 2013

[8]
AS-Quant: Detection and Visualization of Alternative Splicing Events with RNA-seq Data.

Int J Mol Sci. 2021-4-25

[9]
SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data.

Bioinformatics. 2018-1-1

[10]
Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.

PLoS Comput Biol. 2020-6-5

引用本文的文献

[1]
Global transcriptome modulation by xenobiotics: the role of alternative splicing in adaptive responses to chemical exposures.

Hum Genomics. 2024-11-18

[2]
Phenotypic and Differential Gene Expression Analyses of Phase Transition in under High-Density Population Stress.

Insects. 2022-11-8

[3]
Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis.

World J Stem Cells. 2021-10-26

[4]
Bayesian Analysis of RNA-Seq Data Using a Family of Negative Binomial Models.

Bayesian Anal. 2018-6

[5]
Two-step mixed model approach to analyzing differential alternative RNA splicing.

PLoS One. 2020-10-9

[6]
SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins.

Genome Biol. 2020-6-12

[7]
Systematic evaluation of differential splicing tools for RNA-seq studies.

Brief Bioinform. 2020-12-1

[8]
High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report.

Ann Am Thorac Soc. 2019-1

[9]
PennDiff: detecting differential alternative splicing and transcription by RNA sequencing.

Bioinformatics. 2018-7-15

[10]
Comparison of Alternative Splicing Junction Detection Tools Using RNA-Seq Data.

Curr Genomics. 2017-6

本文引用的文献

[1]
Statistical Modeling of RNA-Seq Data.

Stat Sci. 2011-2

[2]
Statistical properties of an early stopping rule for resampling-based multiple testing.

Biometrika. 2012-12

[3]
A Hierarchical Bayesian Model for Estimating and Inferring Differential Isoform Expression for Multi-Sample RNA-Seq Data.

Stat Biosci. 2013-5-1

[4]
Differential analysis of gene regulation at transcript resolution with RNA-seq.

Nat Biotechnol. 2012-12-9

[5]
A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data.

Biostatistics. 2012-9-22

[6]
Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function.

Front Neurosci. 2012-8-21

[7]
Detecting differential usage of exons from RNA-seq data.

Genome Res. 2012-6-21

[8]
Identifying differentially expressed transcripts from RNA-seq data with biological variation.

Bioinformatics. 2012-5-3

[9]
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

Nat Protoc. 2012-3-1

[10]
Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing.

Mol Cell Biol. 2012-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索