Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS One. 2013 Nov 18;8(11):e79448. doi: 10.1371/journal.pone.0079448. eCollection 2013.
High-throughput sequencing of transcriptomes (RNA-Seq) has recently become a powerful tool for the study of gene expression. We present rSeqDiff, an efficient algorithm for the detection of differential expression and differential splicing of genes from RNA-Seq experiments across multiple conditions. Unlike existing approaches which detect differential expression of transcripts, our approach considers three cases for each gene: 1) no differential expression, 2) differential expression without differential splicing and 3) differential splicing. We specify statistical models characterizing each of these three cases and use hierarchical likelihood ratio test for model selection. Simulation studies show that our approach achieves good power for detecting differentially expressed or differentially spliced genes. Comparisons with competing methods on two real RNA-Seq datasets demonstrate that our approach provides accurate estimates of isoform abundances and biological meaningful rankings of differentially spliced genes. The proposed approach is implemented as an R package named rSeqDiff.
转录组高通量测序(RNA-Seq)最近已成为研究基因表达的有力工具。我们提出了 rSeqDiff,这是一种用于检测多个条件下 RNA-Seq 实验中基因差异表达和差异剪接的高效算法。与现有检测转录物差异表达的方法不同,我们的方法考虑了每个基因的三种情况:1)无差异表达,2)无差异剪接的差异表达,3)差异剪接。我们指定了描述这三种情况的统计模型,并使用分层似然比检验进行模型选择。模拟研究表明,我们的方法在检测差异表达或差异剪接基因方面具有良好的功效。在两个真实的 RNA-Seq 数据集上与竞争方法的比较表明,我们的方法提供了准确的异构体丰度估计和差异剪接基因的有意义的生物学排序。所提出的方法实现为一个名为 rSeqDiff 的 R 包。
BMC Bioinformatics. 2010-4-29
BMC Genomics. 2015-6-13
Int J Mol Sci. 2021-4-25
World J Stem Cells. 2021-10-26
Bayesian Anal. 2018-6
Brief Bioinform. 2020-12-1
Bioinformatics. 2018-7-15
Curr Genomics. 2017-6
Stat Sci. 2011-2
Nat Biotechnol. 2012-12-9
Front Neurosci. 2012-8-21
Genome Res. 2012-6-21
Bioinformatics. 2012-5-3