The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, The Weill Cornell Medical College, New York, New York, United States of America ; Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, New York, United States of America.
PLoS One. 2013 Nov 18;8(11):e79871. doi: 10.1371/journal.pone.0079871. eCollection 2013.
Large biological datasets are being produced at a rapid pace and create substantial storage challenges, particularly in the domain of high-throughput sequencing (HTS). Most approaches currently used to store HTS data are either unable to quickly adapt to the requirements of new sequencing or analysis methods (because they do not support schema evolution), or fail to provide state of the art compression of the datasets. We have devised new approaches to store HTS data that support seamless data schema evolution and compress datasets substantially better than existing approaches. Building on these new approaches, we discuss and demonstrate how a multi-tier data organization can dramatically reduce the storage, computational and network burden of collecting, analyzing, and archiving large sequencing datasets. For instance, we show that spliced RNA-Seq alignments can be stored in less than 4% the size of a BAM file with perfect data fidelity. Compared to the previous compression state of the art, these methods reduce dataset size more than 40% when storing exome, gene expression or DNA methylation datasets. The approaches have been integrated in a comprehensive suite of software tools (http://goby.campagnelab.org) that support common analyses for a range of high-throughput sequencing assays.
大型生物数据集正在快速生成,并带来了巨大的存储挑战,特别是在高通量测序(HTS)领域。目前用于存储 HTS 数据的大多数方法要么无法快速适应新测序或分析方法的要求(因为它们不支持模式演变),要么无法对数据集进行最先进的压缩。我们设计了新的方法来存储 HTS 数据,这些方法支持无缝的数据模式演变,并能比现有方法更好地压缩数据集。基于这些新方法,我们讨论并演示了如何通过多层数据组织来显著降低收集、分析和归档大型测序数据集的存储、计算和网络负担。例如,我们表明拼接的 RNA-Seq 比对可以以小于 BAM 文件大小 4%的空间存储,而不会影响数据的完整性。与之前的压缩技术相比,当存储外显子组、基因表达或 DNA 甲基化数据集时,这些方法将数据集大小减少了 40%以上。这些方法已经集成在一个全面的软件工具套件(http://goby.campagnelab.org)中,支持一系列高通量测序实验的常见分析。