Suppr超能文献

氯离子在 ClC 转运蛋白中的电荷转移和极化:自然键轨道和能量分解分析。

Charge transfer and polarization for chloride ions bound in ClC transport proteins: natural bond orbital and energy decomposition analyses.

机构信息

Chemistry Department, University of Colorado Denver , Denver, Colorado 80217-3364, United States.

出版信息

J Phys Chem B. 2013 Dec 19;117(50):16029-43. doi: 10.1021/jp409306x. Epub 2013 Nov 27.

Abstract

ClC transport proteins show a distinct "broken-helix" architecture, in which certain α-helices are oriented with their N-terminal ends pointed toward the binding sites where the chloride ions are held extensively by the backbone amide nitrogen atoms from the helices. To understand the effectiveness of such binding structures, we carried out natural bond orbital analysis and energy decomposition analysis employing truncated active-site model systems for the bound chloride ions along the translocation pore of the EcClC proteins. Our results indicated that the chloride ions are stabilized in such a binding environment by electrostatic, polarization, and charge-transfer interactions with the backbone and a few side chains. Up to ~25% of the formal charges of the chloride ions were found smeared out to the surroundings primarily via charge transfer from the chloride's lone pair n(Cl) orbitals to the protein's antibonding σ*(N-H) or σ*(O-H) orbitals; those σ* orbitals are localized at the polar N-H and O-H bonds in the chloride's first solvation shells formed by the backbone amide groups and the side chains of residues Ser107, Arg147, Glu148, and Tyr445. Polarizations by the chloride ions were dominated by the redistribution of charge densities among the π orbitals and lone pair orbitals of the protein atoms, in particular the atoms of the backbone peptide links and of the side chains of Arg147, Glu148, and Tyr445. The substantial amounts of electron density involved in charge transfer and in polarization were consistent with the large energetic contributions by the two processes revealed by the energy decomposition analysis. The significant polarization and charge-transfer effects may have impacts on the mechanisms and dynamics of the chloride transport by the ClC proteins.

摘要

ClC 转运蛋白具有独特的“破折号”结构,其中某些α-螺旋的 N 端朝向结合位点,氯离子被螺旋的酰胺氮原子广泛结合。为了了解这种结合结构的有效性,我们使用 EcClC 蛋白转运通道中的截断活性位点模型系统,对结合的氯离子进行自然键轨道分析和能量分解分析。我们的结果表明,氯离子在这种结合环境中通过静电、极化和电荷转移相互作用与骨架和一些侧链稳定下来。氯离子的形式电荷中有高达~25%被发现主要通过从氯离子的孤对 n(Cl)轨道到蛋白质的反键 σ*(N-H)或 σ*(O-H)轨道的电荷转移而散布到周围环境中;这些 σ*轨道定位于由骨架酰胺基团和残基 Ser107、Arg147、Glu148 和 Tyr445 的侧链形成的氯离子第一个溶剂化壳的极性 N-H 和 O-H 键上。氯离子的极化主要由蛋白质原子的π轨道和孤对轨道之间的电荷密度重新分布主导,特别是骨架肽键和 Arg147、Glu148 和 Tyr445 的侧链的原子。涉及电荷转移和极化的大量电子密度与能量分解分析揭示的这两个过程的大量能量贡献一致。显著的极化和电荷转移效应可能对 ClC 蛋白的氯离子转运机制和动力学产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验