Suppr超能文献

利用惯性补偿扑翼仿生机器鱼研究鱼类的波动推进。

Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.

机构信息

The Museum of Comparative Zoology, 26 Oxford St., Harvard University, Cambridge, MA 02138, USA. School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People's Republic of China.

出版信息

Bioinspir Biomim. 2013 Dec;8(4):046013. doi: 10.1088/1748-3182/8/4/046013. Epub 2013 Nov 21.

Abstract

Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a 'critically-oscillated' amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that 'critically-oscillated' peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the 'non-oscillated' and 'critically-oscillated' states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes.

摘要

近年来,利用机器人设备研究鱼类游动的技术取得了一些进展,其中包括使用能以恒定速度游动的扑翼式机器人。然而,即使是稳定游动的活体鱼类的速度也不是恒定的,因为鱼类质心在一个尾波周期内轴向摆动。在本文中,我们将一个能在轴向产生受控振荡的直线电机与一个机器人扑翼装置耦合,以模拟自由游动鱼类使用的轴向和侧向振荡运动。这种实验装置允许我们补偿驱动振荡翼的托架和电机的巨大惯性。我们确定了轴向运动的“临界振荡”幅度,在此幅度下,轴向运动力的周期性振荡在整个扑翼周期中大大减小。我们研究了不同轴向振荡幅度下不同长度和弯曲刚度的非刚性翼的中线运动学、功率消耗和尾流流动模式。我们发现,峰值到峰值轴向幅度约为 1.0 毫米且相位正确的“临界振荡”足以模拟质心运动,并且这种幅度与自由游动活体鱼类记录的质心振荡相似。流动可视化揭示了在“非振荡”和“临界振荡”状态下柔性翼的尾流流动之间的差异。惯性补偿方法为研究水生动物游动提供了一种新颖的实验方法,使装备有仪器的机器人游泳者能够展示与自由游动鱼类相似的质心振荡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验