Suppr超能文献

利用具有软流体力弹性体驱动的可变形中鳍的波动仿生机器人模型来理解鱼类的线加速度。

Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.

机构信息

1 School of Mechanical Engineering and Automation, Beihang University , Beijing, China .

2 The Museum of Comparative Zoology, Harvard University , Cambridge, Massachusetts.

出版信息

Soft Robot. 2018 Aug;5(4):375-388. doi: 10.1089/soro.2017.0085. Epub 2018 Apr 10.

Abstract

Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude. We used an array of fluidic elastomeric soft actuators to mimic the dorsal/anal inclinator and erector/depressor muscles of fish, which allowed the soft fins to be erected or folded within 0.3 s. We experimentally show that the biomimetic soft dorsal/anal fin can withstand external loading. We found that erecting the soft dorsal/anal fins significantly enhanced the linear acceleration rate, up to 32.5% over the folded fin state. Surprisingly, even though the projected area of the body (in the lateral plane) increased 16.9% when the median fins were erected, the magnitude of the side force oscillation decreased by 24.8%, which may have led to significantly less side-to-side sway in the robotic swimmer. Visualization of fluid flow in the wake of median fins reveals that during linear acceleration, the soft dorsal fin generates a wake flow opposite in direction to that of the caudal fin, which creates propulsive jets with time-variant circulations and jet angles. Erectable/foldable fins provide a new design space for bioinspired underwater robots with structures that morph to adapt to different locomotor behaviors. This biorobotic fish model is also a potentially promising system for studying the dynamics of complex multifin fish swimming behaviors, including linear acceleration, steady swimming, and burst and coast, which are difficult to analyze in freely swimming fishes.

摘要

尽管线性加速度是鱼类多种运动行为的一个重要共同组成部分,但加速度是推进力中研究最少的方面之一。对具有硬刺和软鳍中鳍的鱼类的加速度行为进行分析表明,鱼类在加速时会主动调节鳍的面积。我们实现了一种使用多材料三维打印制造的中鳍的波动仿生机器鱼模型,其中包括硬刺状背鳍、软鳍状背鳍/臀鳍和尾鳍——其刚度跨越三个数量级。我们使用了一系列流体弹性软致动器来模拟鱼类的背/臀倾斜肌和升/降肌,这使得软鳍可以在 0.3 秒内竖起或折叠。我们通过实验表明,仿生软背/臀鳍可以承受外部负载。我们发现,竖起软背/臀鳍可以显著提高线性加速度率,最高可达折叠鳍状态的 32.5%。令人惊讶的是,即使当中鳍竖起时,身体(在侧平面上)的投影面积增加了 16.9%,侧向力振荡的幅度却减少了 24.8%,这可能导致机器鱼在侧向的摆动明显减少。对中鳍尾流中的流场进行可视化显示,在直线加速过程中,软背鳍产生与尾鳍相反方向的尾流,这会产生具有时变环流和射流角度的推进射流。可竖起/可折叠的鳍为仿生水下机器人提供了一个新的设计空间,这些机器人的结构可以变形以适应不同的运动行为。这种仿生机器鱼模型也是研究复杂多鳍鱼类游泳行为动力学的一个很有前途的系统,包括直线加速、稳定游泳、爆发和滑行,这些行为在自由游动的鱼类中很难分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验