Department of Bioengineering, University of California San Diego, La Jolla, California 92093-0412, USA.
Nat Commun. 2013;4:2809. doi: 10.1038/ncomms3809.
Syntrophic associations are central to microbial communities and thus have a fundamental role in the global carbon cycle. Despite biochemical approaches describing the physiological activity of these communities, there has been a lack of a mechanistic understanding of the relationship between complex nutritional and energetic dependencies and their functioning. Here we apply a multi-omic modelling workflow that combines genomic, transcriptomic and physiological data with genome-scale models to investigate dynamics and electron flow mechanisms in the syntrophic association of Geobacter metallireducens and Geobacter sulfurreducens. Genome-scale modelling of direct interspecies electron transfer reveals insights into the energetics of electron transfer mechanisms. While G. sulfurreducens adapts to rapid syntrophic growth by changes at the genomic and transcriptomic level, G. metallireducens responds only at the transcriptomic level. This multi-omic approach enhances our understanding of adaptive responses and factors that shape the evolution of syntrophic communities.
共代谢关联是微生物群落的核心,因此在全球碳循环中起着基础性作用。尽管生化方法描述了这些群落的生理活性,但对于复杂的营养和能量依赖性及其功能之间的关系,我们缺乏一种机制上的理解。在这里,我们应用了一种多组学建模工作流程,该流程将基因组、转录组和生理数据与基因组规模模型相结合,以研究 Geobacter metallireducens 和 Geobacter sulfurreducens 共代谢关联中的动态和电子流动机制。直接种间电子转移的基因组规模建模揭示了电子转移机制的能量学见解。虽然 G. sulfurreducens 通过基因组和转录组水平的变化来适应快速共代谢生长,但 G. metallireducens 仅在转录组水平上做出响应。这种多组学方法增强了我们对适应反应和塑造共代谢群落进化的因素的理解。