Li Yan, Bhalli Javed A, Ding Wei, Yan Jian, Pearce Mason G, Sadiq Rakhshinda, Cunningham Candice K, Jones M Yvonne, Monroe William A, Howard Paul C, Zhou Tong, Chen Tao
Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR , USA .
Nanotoxicology. 2014 Aug;8 Suppl 1:36-45. doi: 10.3109/17435390.2013.855827. Epub 2013 Nov 22.
Silver nanoparticles (AgNPs) are among the most commercially used nanomaterials and their toxicity and genotoxicity are controversial. Although many in vitro studies have been conducted to evaluate the genotoxicity of AgNPs, in vivo genotoxicity studies on the nanomaterials are limited. Given the unique physicochemical properties and complex pharmacokinetics behavior of nanoparticles (NPs), in vivo genotoxicity assessment of AgNPs is badly needed. In this study, the clastogenicity and mutagenicity of AgNPs with different sizes and coatings were evaluated using mouse micronucleus (MN) assay, Pig-a assay and Comet assay. Five 7-week-old male B6C3F1 mice per group were treated with 5 nm polyvinylpyrrolidone (PVP)-coated AgNPs at a single dose of 0.5, 1.0, 2.5, 5.0, 10.0 or 20.0 mg/kg body weight (bw) via intravenous injection for both the MN and Pig-a assays; or with 15-100 nm PVP- or 10-80 nm silicon-coated AgNPs at a single or 3-day repeated dose of 25.0 mg/kg bw for the MN assay and Comet assay in mouse liver. Inductively coupled plasma mass spectrometry (ICP-MS) and transmission electron microscopy (TEM) analyses indicated that AgNPs reached the testing tissues (bone marrow for the MN and Pig-a assays and liver for the Comet assay). Although there was a reduction of reticulocytes in the PVP-coated AgNPs-treated animals, indicating cytotoxicity of the AgNPs, none of the treatments resulted in a significant increase of either mutant frequencies in the Pig-a gene or the percent of micronucleated reticulocyte over the concurrent controls. However, both the PVP- and silicon-coated AgNPs induced oxidative DNA damage in mouse liver. These results demonstrate that the AgNPs can reach mouse bone marrow and liver, and generate cytotoxicity to the reticulocytes and oxidative DNA damage to the liver.
银纳米颗粒(AgNPs)是商业用途最为广泛的纳米材料之一,其毒性和遗传毒性存在争议。尽管已经开展了许多体外研究来评估AgNPs的遗传毒性,但关于这些纳米材料的体内遗传毒性研究却很有限。鉴于纳米颗粒(NPs)独特的物理化学性质和复杂的药代动力学行为,对AgNPs进行体内遗传毒性评估十分必要。在本研究中,使用小鼠微核(MN)试验、Pig-a试验和彗星试验评估了不同尺寸和涂层的AgNPs的致断裂性和致突变性。每组五只7周龄雄性B6C3F1小鼠,通过静脉注射,以0.5、1.0、2.5、5.0、10.0或20.0 mg/kg体重(bw)的单一剂量给予5 nm聚乙烯吡咯烷酮(PVP)包覆的AgNPs,用于MN试验和Pig-a试验;或以25.0 mg/kg bw的单一或3天重复剂量给予15 - 100 nm PVP包覆或10 - 80 nm硅包覆的AgNPs,用于小鼠肝脏的MN试验和彗星试验。电感耦合等离子体质谱(ICP-MS)和透射电子显微镜(TEM)分析表明,AgNPs到达了测试组织(MN试验和Pig-a试验的骨髓以及彗星试验的肝脏)。尽管在PVP包覆的AgNPs处理的动物中出现了网织红细胞减少,表明AgNPs具有细胞毒性,但与同期对照相比,所有处理均未导致Pig-a基因的突变频率或微核网织红细胞百分比显著增加。然而,PVP包覆和硅包覆的AgNPs均在小鼠肝脏中诱导了氧化性DNA损伤。这些结果表明,AgNPs可到达小鼠骨髓和肝脏,对网织红细胞产生细胞毒性,并对肝脏造成氧化性DNA损伤。