Suppr超能文献

磷酸化调节 RNA 聚合酶 II 与低复杂度域纤维状聚合物的结合。

Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.

机构信息

Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152.

Department of Molecular Biology and Genetics The Johns Hopkins University School of Medicine Baltimore, MD 21205.

出版信息

Cell. 2013 Nov 21;155(5):1049-1060. doi: 10.1016/j.cell.2013.10.033.

Abstract

The low-complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS), and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here, we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state and released for elongation following phosphorylation of the CTD.

摘要

融合肉瘤(FUS)、尤因肉瘤(EWS)和 TAF15 基因产物的低复杂度(LC)结构域易位到多种不同的 DNA 结合结构域,从而有助于驱动癌细胞的形成。在易位融合蛋白的背景下,这些 LC 序列作为转录激活结构域发挥作用。在这里,我们表明这些 LC 结构域形成的聚合纤维以可被 CTD 重复七肽中磷酸化逆转的方式直接结合 RNA 聚合酶 II 的 C 末端结构域(CTD)。突变分析表明,CTD 和 LC 结构域聚合物之间的结合程度与转录激活的强度相关。这些研究为理解 RNA 聚合酶 II 在未磷酸化状态下如何被募集到活性基因并在 CTD 磷酸化后释放以进行延伸提供了一种简单的概念化方法。

相似文献

1
Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.
Cell. 2013 Nov 21;155(5):1049-1060. doi: 10.1016/j.cell.2013.10.033.
2
Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
Biochemistry. 2018 May 1;57(17):2549-2563. doi: 10.1021/acs.biochem.7b00310. Epub 2017 Oct 11.
3
Getting Access to Low-Complexity Domain Modifications.
Trends Biochem Sci. 2016 Nov;41(11):894-897. doi: 10.1016/j.tibs.2016.05.010. Epub 2016 Jun 6.
4
TLS, EWS and TAF15: a model for transcriptional integration of gene expression.
Brief Funct Genomic Proteomic. 2006 Mar;5(1):8-14. doi: 10.1093/bfgp/ell015. Epub 2006 Feb 23.
6
RGG boxes within the TET/FET family of RNA-binding proteins are functionally distinct.
Transcription. 2016 Aug 7;7(4):141-51. doi: 10.1080/21541264.2016.1183071. Epub 2016 May 9.
7
Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.
Mol Cell. 2015 Oct 15;60(2):231-41. doi: 10.1016/j.molcel.2015.09.006. Epub 2015 Oct 8.
8
FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2.
Genes Dev. 2012 Dec 15;26(24):2690-5. doi: 10.1101/gad.204602.112.

引用本文的文献

3
Transient Poly(ADP-Ribose) Triggers FUS Condensation Hysteresis via a Prion-Like Mechanism.
bioRxiv. 2025 Jul 5:2025.07.03.659157. doi: 10.1101/2025.07.03.659157.
5
Phase separation of the oncogenic fusion protein EWS::FLI1 is modulated by its DNA-binding domain.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2221823122. doi: 10.1073/pnas.2221823122. Epub 2025 May 16.
6
RNA polymerase II partitioning is a shared feature of diverse oncofusion condensates.
Cell. 2025 Jul 10;188(14):3843-3862.e28. doi: 10.1016/j.cell.2025.04.002. Epub 2025 Apr 25.
7
A simple method for mapping the location of cross-β-forming regions within protein domains of low sequence complexity.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2503382122. doi: 10.1073/pnas.2503382122. Epub 2025 Apr 23.
8
Emerging roles of transcriptional condensates as temporal signal integrators.
Nat Rev Genet. 2025 Apr 16. doi: 10.1038/s41576-025-00837-y.
9
Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2424470122. doi: 10.1073/pnas.2424470122. Epub 2025 Mar 10.
10
Direct ionic stress sensing and mitigation by the transcription factor NFAT5.
Sci Adv. 2025 Feb 21;11(8):eadu3194. doi: 10.1126/sciadv.adu3194. Epub 2025 Feb 19.

本文引用的文献

2
A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction.
Nat Struct Mol Biol. 2013 May;20(5):611-9. doi: 10.1038/nsmb.2549. Epub 2013 Apr 7.
3
FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2.
Genes Dev. 2012 Dec 15;26(24):2690-5. doi: 10.1101/gad.204602.112.
4
Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17931-5. doi: 10.1073/pnas.1215241109. Epub 2012 Oct 15.
5
Updating the RNA polymerase CTD code: adding gene-specific layers.
Trends Genet. 2012 Jul;28(7):333-41. doi: 10.1016/j.tig.2012.03.007. Epub 2012 May 21.
9
Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets.
Annu Rev Pathol. 2012;7:145-59. doi: 10.1146/annurev-pathol-011110-130237. Epub 2011 Sep 19.
10
Progression through the RNA polymerase II CTD cycle.
Mol Cell. 2009 Nov 25;36(4):541-6. doi: 10.1016/j.molcel.2009.10.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验