EMBL - European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstr. 1, 69917 Heidelberg, Germany; Univ. Grenoble Alpes, UVHCI, F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France.
EMBL - European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstr. 1, 69917 Heidelberg, Germany.
J Struct Biol. 2014 Jan;185(1):15-26. doi: 10.1016/j.jsb.2013.11.003. Epub 2013 Nov 21.
Helical reconstruction from electron cryomicrographs has become a routine technique for macromolecular structure determination of helical assemblies since the first days of Fourier-based three-dimensional image reconstruction. In the past decade, the single-particle technique has had an important impact on the advancement of helical reconstruction. Here, we present the software package SPRING that combines Fourier based symmetry analysis and real-space helical processing into a single workflow. One of the most time-consuming steps in helical reconstruction is the determination of the initial symmetry parameters. First, we propose a class-based helical reconstruction approach that enables the simultaneous exploration and evaluation of many symmetry combinations at low resolution. Second, multiple symmetry solutions can be further assessed and refined by single-particle based helical reconstruction using the correlation of simulated and experimental power spectra. Finally, the 3D structure can be determined to high resolution. In order to validate the procedure, we use the reference specimen Tobacco Mosaic Virus (TMV). After refinement of the helical symmetry, a total of 50,000 asymmetric units from two micrographs are sufficient to reconstruct a subnanometer 3D structure of TMV at 6.4Å resolution. Furthermore, we introduce the individual programs of the software and discuss enhancements of the helical reconstruction workflow. Thanks to its user-friendly interface and documentation, SPRING can be utilized by the novice as well as the expert user. In addition to the study of well-ordered helical structures, the development of a streamlined workflow for single-particle based helical reconstruction opens new possibilities to analyze specimens that are heterogeneous in symmetries.
自基于傅里叶的三维图像重建的最初几天以来,电子低温显微镜重建已成为螺旋组装体的大分子结构测定的常规技术。在过去的十年中,单颗粒技术对螺旋重建的发展产生了重要影响。在这里,我们介绍了 SPRING 软件包,该软件包将基于傅里叶的对称分析和实空间螺旋处理结合到单个工作流程中。螺旋重建中最耗时的步骤之一是确定初始对称参数。首先,我们提出了一种基于类的螺旋重建方法,该方法能够在低分辨率下同时探索和评估许多对称组合。其次,通过使用模拟和实验功率谱的相关性进行基于单颗粒的螺旋重建,可以进一步评估和完善多个对称解。最后,可以确定 3D 结构达到高分辨率。为了验证该过程,我们使用参考标本烟草花叶病毒(TMV)。在对螺旋对称性进行细化之后,仅需从两个显微镜照片中总共 50,000 个不对称单元,即可在 6.4Å分辨率下重建 TMV 的亚纳米 3D 结构。此外,我们介绍了该软件的各个程序,并讨论了螺旋重建工作流程的增强。由于其用户友好的界面和文档,SPRING 既可以供新手使用,也可以供专家用户使用。除了对有序螺旋结构的研究外,基于单颗粒的螺旋重建的简化工作流程的开发为分析具有不同对称性的样品开辟了新的可能性。