Xu Xiao-Ping, Cao Wenxiang, Swift Mark F, Pandit Nandan G, Huehn Andrew E, Sindelar Charles V, De La Cruz Enrique M, Hanein Dorit, Volkmann Niels
Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
Commun Chem. 2024 Jul 30;7(1):164. doi: 10.1038/s42004-024-01243-x.
Actin filament assembly and the regulation of its mechanical properties are fundamental processes essential for eukaryotic cell function. Residue E167 in vertebrate actins forms an inter-subunit salt bridge with residue K61 of the adjacent subunit. Saccharomyces cerevisiae actin filaments are more flexible than vertebrate filaments and have an alanine at this position (A167). Substitution of this alanine for a glutamic acid (A167E) confers Saccharomyces cerevisiae actin filaments with salt-dependent stiffness similar to vertebrate actins. We developed an optimized cryogenic electron microscopy workflow refining sample preparation and vitrification to obtain near-atomic resolution structures of wild-type and A167E mutant Saccharomyces cerevisiae actin filaments. The difference between these structures allowed us to pinpoint the potential binding site of a filament-associated cation that controls the stiffness of the filaments in vertebrate and A167E Saccharomyces cerevisiae actins. Through an analysis of previously published high-resolution reconstructions of vertebrate actin filaments, along with a newly determined high-resolution vertebrate actin structure in the absence of potassium, we identified a unique peak near residue 167 consistent with the binding of a magnesium ion. Our findings show how magnesium can contribute to filament stiffening by directly bridging actin subunits and allosterically affecting the orientation of the DNase-I binding loop of actin, which plays a regulatory role in modulating actin filament stiffness and interactions with regulatory proteins.
肌动蛋白丝的组装及其机械性能的调节是真核细胞功能所必需的基本过程。脊椎动物肌动蛋白中的E167残基与相邻亚基的K61残基形成亚基间盐桥。酿酒酵母肌动蛋白丝比脊椎动物的丝更具柔韧性,且在该位置有一个丙氨酸(A167)。将此丙氨酸替换为谷氨酸(A167E),可使酿酒酵母肌动蛋白丝具有类似于脊椎动物肌动蛋白的盐依赖性刚性。我们开发了一种优化的低温电子显微镜工作流程,改进了样品制备和玻璃化过程,以获得野生型和A167E突变型酿酒酵母肌动蛋白丝的近原子分辨率结构。这些结构之间的差异使我们能够确定细丝相关阳离子的潜在结合位点,该阳离子控制脊椎动物和A167E酿酒酵母肌动蛋白中细丝的刚性。通过分析先前发表的脊椎动物肌动蛋白丝的高分辨率重建结果,以及新确定的无钾状态下的脊椎动物肌动蛋白高分辨率结构,我们在167残基附近发现了一个独特的峰,与镁离子的结合一致。我们的研究结果表明,镁如何通过直接连接肌动蛋白亚基并变构影响肌动蛋白的DNase-I结合环的方向来促进细丝变硬,该环在调节肌动蛋白丝的刚性以及与调节蛋白的相互作用中起调节作用。