Suppr超能文献

检测基因-基因联合作用的有效策略及其在精神分裂症中的应用。

Efficient strategy for detecting gene × gene joint action and its application in schizophrenia.

机构信息

Department of Applied Statistics, Chung-Ang University, Seoul, Korea; Research Center for Data Science, Chung-Ang University, Seoul, Korea.

出版信息

Genet Epidemiol. 2014 Jan;38(1):60-71. doi: 10.1002/gepi.21779. Epub 2013 Nov 23.

Abstract

We propose a new approach to detect gene × gene joint action in genome-wide association studies (GWASs) for case-control designs. This approach offers an exhaustive search for all two-way joint action (including, as a special case, single gene action) that is computationally feasible at the genome-wide level and has reasonable statistical power under most genetic models. We found that the presence of any gene × gene joint action may imply differences in three types of genetic components: the minor allele frequencies and the amounts of Hardy-Weinberg disequilibrium may differ between cases and controls, and between the two genetic loci the degree of linkage disequilibrium may differ between cases and controls. Using Fisher's method, it is possible to combine the different sources of genetic information in an overall test for detecting gene × gene joint action. The proposed statistical analysis is efficient and its simplicity makes it applicable to GWASs. In the current study, we applied the proposed approach to a GWAS on schizophrenia and found several potential gene × gene interactions. Our application illustrates the practical advantage of the proposed method.

摘要

我们提出了一种新的方法来检测病例对照设计的全基因组关联研究(GWAS)中的基因×基因联合作用。这种方法提供了一种在全基因组水平上可行的、在大多数遗传模型下具有合理统计功效的全面搜索所有双向联合作用(包括作为特殊情况的单基因作用)的方法。我们发现,任何基因×基因联合作用的存在都可能意味着三种遗传成分的差异:病例和对照组之间的次要等位基因频率和哈迪-温伯格不平衡程度可能不同,病例和对照组之间两个遗传位点之间的连锁不平衡程度也可能不同。使用 Fisher 方法,可以将不同的遗传信息来源组合在一个总的检测基因×基因联合作用的检验中。所提出的统计分析是有效的,其简单性使其适用于 GWAS。在本研究中,我们将所提出的方法应用于精神分裂症的 GWAS 研究中,发现了几个潜在的基因×基因相互作用。我们的应用说明了所提出方法的实际优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验