From the Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California 94305.
J Biol Chem. 2014 Jan 3;289(1):387-402. doi: 10.1074/jbc.M113.504779. Epub 2013 Nov 22.
Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance.
Latrophilin-1、-2 和 -3 是粘附型 G 蛋白偶联受体,也是辅助 α- latrotoxin 受体,这表明它们可能具有突触功能。通过下拉实验,我们鉴定了 tenurin,一种也是候选突触细胞粘附分子的 II 型跨膜蛋白,是 latrophilin 凝集素样结构域的相互作用蛋白。我们表明 tenurin 以纳摩尔亲和力与 latrophilin 结合,并且这种结合介导细胞粘附,这与 tenurin 结合 latrophilin 在突触间相互作用中的作用一致。所有 latrophilin 都在 N 端发生选择性剪接;在 latrophilin-1 中,这种选择性剪接调节 tenurin 结合,但对 latrophilin-1 与另一种配体 FLRT3 的结合没有影响。将 latrophilin-1 的可溶性 tenurin 结合片段添加到培养神经元中会降低突触密度,这表明 latrophilin 与 tenurin 的结合可能直接或间接影响突触的形成和/或维持。鉴于果蝇 tenurin 被提议在确定突触特异性中的作用,这些观察结果具有潜在的吸引力。然而,果蝇中的 tenurin 被认为是作为同型细胞粘附分子起作用的,而我们的发现表明了一种异源细胞粘附的相互作用机制。因此,我们测试了哺乳动物 tenurin 是否除了作为异源细胞粘附分子结合 latrophilin 之外,也是同型细胞粘附分子。引人注目的是,我们发现尽管 tenurin 在溶液中彼此结合,但同型 tenurin-tenurin 结合无法支持稳定的细胞粘附,这与异源 tenurin-latrophilin 结合不同。因此,哺乳动物 tenurin 作为异源细胞粘附分子起作用,可能参与诸如突触形成或维持的跨神经元相互作用过程。