Department of Clinical Chemistry, University of Crete, Medical School, 71003 Heraklion, Greece;
J Immunol. 2014 Jan 1;192(1):394-406. doi: 10.4049/jimmunol.1300959. Epub 2013 Nov 25.
Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.
急性呼吸窘迫综合征(ARDS)是呼吸衰竭的主要原因,目前可用的有效治疗方法有限。肺泡巨噬细胞参与 ARDS 的发病机制。为了研究巨噬细胞活化在无菌性肺损伤中的作用,并确定具有治疗潜力的分子介质,本研究通过盐酸吸入法在野生型(WT)和 Akt2(-/-)小鼠中诱导肺损伤。WT 小鼠的酸性诱导性肺损伤表现为肺顺应性降低,支气管肺泡灌洗液中蛋白和细胞因子浓度增加。肺泡巨噬细胞获得经典激活(M1)表型。与 WT 小鼠相比,Akt2(-/-)小鼠的酸性诱导性肺损伤较轻。来自酸性损伤 Akt2(-/-)小鼠的肺泡巨噬细胞表现出替代激活表型(M2)。虽然 M2 极化抑制了无菌性肺损伤,但当 Akt2(-/-)小鼠感染铜绿假单胞菌时,会导致肺部细菌负荷增加。miR-146a 是一种针对 TLR4 信号的抗炎 microRNA,在 WT 小鼠肺损伤的晚期诱导,而在 Akt2(-/-)小鼠中则早期增加。事实上,WT 巨噬细胞中 miR-146a 的过表达抑制 LPS 诱导的诱导型一氧化氮合酶(iNOS)并促进 M2 极化,而 Akt2(-/-)巨噬细胞中 miR-146a 的抑制恢复了 iNOS 的表达。此外,WT 小鼠暴露于酸性后,miR-146a 的传递或 Akt2 的沉默导致肺泡巨噬细胞中 iNOS 的抑制。总之,Akt2 抑制和 miR-146a 的诱导促进了 M2 巨噬细胞表型,从而改善了酸性诱导的肺损伤。通过 Akt2 或 miR-146a 对巨噬细胞表型的体内调节可能为无菌性 ARDS 提供一种潜在的治疗方法;然而,由于细菌清除受损,它可能对脓毒症性 ARDS 有害。