National University of Ireland, Galway, National Centre for Biomedical Engineering Science and Apoptosis Research Centre, Molecular Therapeutics Group, Galway, Ireland.
Cancers (Basel). 2010 Nov 24;2(4):1952-79. doi: 10.3390/cancers2041952.
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
凋亡的一个功能是自杀性地破坏潜在有害的细胞,如癌细胞。因此,它们的生长取决于对凋亡的逃避,这被认为是癌症的标志之一。凋亡最终是通过起始 caspase 和执行 caspase 的顺序激活来实现的,它们构成了参与有序细胞解体的细胞内蛋白酶家族。因此,在癌症中,人们预计 caspase 会经常变得无活性,无论是通过基因沉默还是体细胞突变。然而,从临床数据来看,几乎没有证据表明 caspase 基因在癌症中受损。执行 caspase 很少发现突变或沉默,起始 caspase 也仅在特定类型的癌症中受到影响。来自转基因小鼠的实验证据表明,某些起始 caspase,如 caspase-8 和 -2,可能作为肿瘤抑制因子发挥作用。然而,内源性凋亡途径的起始 caspase caspase-9 的缺失并没有促进细胞转化。这些数据似乎对 caspase 的一般肿瘤抑制作用提出了质疑。我们讨论了肿瘤细胞可能逃避改变 caspase 基因的需求的几种可能方式。首先,肿瘤细胞中的选择性剪接可能会产生对抗凋亡的 caspase 变体。其次,细胞 caspase 抑制剂,如 c-FLIP 或 XIAP,可能会抑制肿瘤细胞中的 caspase。第三,肿瘤细胞中 caspase 激活的上游途径可能会中断。最后, caspase 非依赖性细胞死亡机制可能会消除在肿瘤发展过程中 caspase 失活的选择压力。然而,这些情况几乎与几种癌症类型中自发凋亡的相当高频率不兼容。因此,替代概念可能会发挥作用,例如代偿性增殖。在此,凋亡和/或 caspase 的非凋亡功能甚至可能促进肿瘤的发展。此外,实验证据表明,caspase 可能在对肿瘤发生至关重要的过程中发挥非凋亡作用,例如细胞增殖、迁移或侵袭。因此,我们提出了一个模型,其中 caspase 由于其对肿瘤发生和发展的功能贡献而在肿瘤细胞中得以保留。