Neuronal Gene Expression Laboratory and Molecular Organ Function Laboratory, Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Department of Molecular Biology, 72076 Tübingen, Germany; Laboratory for NeuroRegeneration and Repair and Laboratory for Molecular Neuro-Oncology, Eberhard Karls University Tübingen, Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany; and Department of Gene Therapy and Institute for Physiological Chemistry, Ulm University, 89081 Ulm, Germany.
J Neurosci. 2013 Nov 27;33(48):18836-48. doi: 10.1523/JNEUROSCI.3029-13.2013.
Axonal injury generates growth inert retraction bulbs with dynamic cytoskeletal properties that are severely compromised. Conversion of "frozen" retraction bulbs into actively progressing growth cones is a major aim in axon regeneration. Here we report that murine serum response factor (SRF), a gene regulator linked to the actin cytoskeleton, modulates growth cone actin dynamics during axon regeneration. In regeneration-competent facial motoneurons, Srf deletion inhibited axonal regeneration. In wild-type mice after nerve injury, SRF translocated from the nucleus to the cytoplasm, suggesting a cytoplasmic SRF function in axonal regeneration. Indeed, adenoviral overexpression of cytoplasmic SRF (SRF-ΔNLS-GFP) stimulated axonal sprouting and facial nerve regeneration in vivo. In primary central and peripheral neurons, SRF-ΔNLS-GFP stimulated neurite outgrowth, branch formation, and growth cone morphology. Furthermore, we uncovered a link between SRF and the actin-severing factor cofilin during axonal regeneration in vivo. Facial nerve axotomy increased the total cofilin abundance and also nuclear localization of phosphorylated cofilin in a subpopulation of lesioned motoneurons. This cytoplasmic-to-nucleus translocation of P-cofilin upon axotomy was reduced in motoneurons expressing SRF-ΔNLS-GFP. Finally, we demonstrate that cytoplasmic SRF and cofilin formed a reciprocal regulatory unit. Overexpression of cytoplasmic SRF reduced cofilin phosphorylation and vice versa: overexpression of cofilin inhibited SRF phosphorylation. Therefore, a regulatory loop consisting of SRF and cofilin might take part in reactivating actin dynamics in growth-inert retraction bulbs and facilitating axon regeneration.
轴突损伤会产生具有动态细胞骨架特性的生长惰性回缩球,其严重受损。将“冻结”的回缩球转化为活跃的生长锥是轴突再生的主要目标。在这里,我们报告说,与肌动蛋白细胞骨架相关的基因调节剂鼠血清反应因子(SRF)调节轴突再生过程中的生长锥肌动蛋白动力学。在具有再生能力的面运动神经元中,Srf 缺失抑制了轴突再生。在神经损伤后的野生型小鼠中,SRF 从核转移到细胞质,表明细胞质 SRF 在轴突再生中具有功能。事实上,腺病毒过表达细胞质 SRF(SRF-ΔNLS-GFP)刺激体内轴突发芽和面神经再生。在原代中枢和周围神经元中,SRF-ΔNLS-GFP 刺激神经突生长、分支形成和生长锥形态。此外,我们在体内轴突再生过程中发现了 SRF 和肌动蛋白切割因子丝切蛋白之间的联系。面神经切断术增加了总丝切蛋白的丰度,并使损伤运动神经元中磷酸化丝切蛋白的核定位增加。这种 P-丝切蛋白在神经切断后的细胞质到细胞核易位在表达 SRF-ΔNLS-GFP 的运动神经元中减少。最后,我们证明细胞质 SRF 和丝切蛋白形成了一个相互调节的单元。细胞质 SRF 的过表达降低了丝切蛋白的磷酸化,反之亦然:丝切蛋白的过表达抑制了 SRF 的磷酸化。因此,由 SRF 和丝切蛋白组成的调节环可能参与重新激活生长惰性回缩球中的肌动蛋白动力学,并促进轴突再生。