Suppr超能文献

噬菌体ε15吸附装置中结构蛋白的遗传分析

Genetic analysis of structural proteins in the adsorption apparatus of bacteriophage epsilon 15.

作者信息

Guichard Jared A, Middleton Paula C, McConnell Michael R

机构信息

Jared A Guichard, Paula C Middleton, Michael R McConnell, Department of Biology, Point Loma Nazarene University, San Diego, CA 92106, United States.

出版信息

World J Virol. 2013 Nov 12;2(4):152-9. doi: 10.5501/wjv.v2.i4.152.

Abstract

AIM

To probe the organizational structure of the adsorption apparatus of bacteriophage epsilon 15 (E15) using genetic and biochemical methodology

METHODS

Hydroxylamine was used to create nonsense mutants of bacteriophage E15. The mutants were then screened for defects in their adsorption apparatus proteins, initially by measuring the concentrations of free tail spike proteins in lysates of cells that had been infected by the phage mutants under non-permissive growth conditions. Phage strains whose infected cell lysates contained above-average levels of free tail spike protein under non-permissive growth conditions were assumed to contain nonsense mutations in genes coding for adsorption apparatus proteins. These mutants were characterized by classical genetic mapping methods as well as automated sequencing of several of their genes. Finally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography were used to examine the protein compositions of the radioactive particles produced when the various mutants were grown on a non-permissive host cell in the presence of (35)S-methionine and co-purified along with E15wt phage on CsCl block gradients.

RESULTS

Our results are consistent with gp4 forming the portal ring structure of E15. In addition, they show that proteins gp15 and gp17 likely comprise the central tube portion of the E15 adsorption apparatus, with gp17 being more distally positioned than gp15 and dependent upon both gp15 and gp16 for its attachment. Finally, our data indicates that tail spike proteins comprised of gp20 can assemble onto nascent virions that contain gp7, gp10, gp4 and packaged DNA, but which lack both gp15 and gp17, thereby forming particles that are of sufficient stability to survive CsCl buoyant density centrifugation.

CONCLUSION

The portal ring (gp4) of E15 is bound to tail spikes (gp20) and the tail tube (gp15 and gp17); gp17's attachment requires both gp15 and gp16.

摘要

目的

运用遗传学和生物化学方法探究噬菌体ε15(E15)吸附装置的组织结构

方法

使用羟胺构建噬菌体E15的无义突变体。随后,最初通过测量在非允许生长条件下被噬菌体突变体感染的细胞裂解物中游离尾刺蛋白的浓度,筛选这些突变体在其吸附装置蛋白方面的缺陷。在非允许生长条件下,其感染细胞裂解物中游离尾刺蛋白水平高于平均水平的噬菌体菌株被假定在编码吸附装置蛋白的基因中含有无义突变。这些突变体通过经典遗传图谱绘制方法以及对其几个基因的自动测序进行表征。最后,使用十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳和放射自显影来检查当各种突变体在存在(35)S - 甲硫氨酸的非允许宿主细胞上生长并与E15wt噬菌体一起在CsCl阻滞梯度上共纯化时产生的放射性颗粒的蛋白质组成。

结果

我们的结果与gp4形成E15的门户环结构一致。此外,它们表明蛋白gp15和gp17可能构成E15吸附装置的中心管部分,其中gp17比gp15更位于远端,并且其附着依赖于gp15和gp16两者。最后,我们的数据表明由gp20组成的尾刺蛋白可以组装到含有gp7、gp10、gp4和包装DNA,但缺乏gp15和gp17的新生病毒粒子上,从而形成具有足够稳定性以在CsCl浮力密度离心中存活的颗粒。

结论

E15的门户环(gp4)与尾刺(gp20)和尾管(gp15和gp17)结合;gp17的附着需要gp15和gp16两者。

相似文献

1
Genetic analysis of structural proteins in the adsorption apparatus of bacteriophage epsilon 15.
World J Virol. 2013 Nov 12;2(4):152-9. doi: 10.5501/wjv.v2.i4.152.
2
Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery.
J Mol Biol. 2023 Dec 15;435(24):168365. doi: 10.1016/j.jmb.2023.168365. Epub 2023 Nov 10.
3
The T7 ejection nanomachine components gp15-gp16 form a spiral ring complex that binds DNA and a lipid membrane.
Virology. 2015 Dec;486:263-71. doi: 10.1016/j.virol.2015.09.022. Epub 2015 Oct 27.
6
Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4.
J Mol Biol. 2006 Oct 20;363(2):558-76. doi: 10.1016/j.jmb.2006.08.014. Epub 2006 Aug 12.
8
Genetic analysis of subunit assembly of the tail fiber of bacteriophage T3.
Virology. 1985 Oct 15;146(1):12-21. doi: 10.1016/0042-6822(85)90048-0.
9
Structural organisation of the head-to-tail interface of a bacterial virus.
J Mol Biol. 2001 Jul 27;310(5):1027-37. doi: 10.1006/jmbi.2001.4800.

引用本文的文献

1
Expanding structural insights into DNA packaging apparatus and endolysin LysSA05 function of Epsilon15 bacteriophage.
Front Cell Infect Microbiol. 2025 Aug 14;15:1643576. doi: 10.3389/fcimb.2025.1643576. eCollection 2025.
2
Diversity and Function of Phage Encoded Depolymerases.
Front Microbiol. 2020 Jan 10;10:2949. doi: 10.3389/fmicb.2019.02949. eCollection 2019.
3
Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3103-3119. doi: 10.1007/s00253-017-8224-6. Epub 2017 Mar 23.

本文引用的文献

1
Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12301-6. doi: 10.1073/pnas.1309947110. Epub 2013 Jul 9.
2
Animal contact as a source of human non-typhoidal salmonellosis.
Vet Res. 2011 Feb 14;42(1):34. doi: 10.1186/1297-9716-42-34.
3
Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly.
Virology. 2011 Mar 15;411(2):393-415. doi: 10.1016/j.virol.2010.12.046. Epub 2011 Feb 18.
4
Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection.
J Mol Biol. 2010 Oct 1;402(4):731-40. doi: 10.1016/j.jmb.2010.07.058. Epub 2010 Aug 13.
5
The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit.
Structure. 2009 Jun 10;17(6):789-99. doi: 10.1016/j.str.2009.04.006.
6
Genomic analysis of bacteriophage epsilon 34 of Salmonella enterica serovar Anatum (15+).
BMC Microbiol. 2008 Dec 17;8:227. doi: 10.1186/1471-2180-8-227.
7
Transport of phage P22 DNA across the cytoplasmic membrane.
J Bacteriol. 2009 Jan;191(1):135-40. doi: 10.1128/JB.00778-08. Epub 2008 Oct 31.
8
JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles.
J Struct Biol. 2009 Jan;165(1):1-9. doi: 10.1016/j.jsb.2008.09.006. Epub 2008 Sep 30.
9
10
The genome of epsilon15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage.
Virology. 2007 Dec 20;369(2):234-44. doi: 10.1016/j.virol.2007.07.027. Epub 2007 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验