Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University School of Medicine, Kingston, ON, Canada.
Neurogastroenterol Motil. 2014 Mar;26(3):334-45. doi: 10.1111/nmo.12268. Epub 2013 Nov 29.
Stress hormones can signal to colonic dorsal root ganglia (DRG) neurons and may play a role in sustained hyperexcitability of nociceptors.
Mouse DRG neurons were exposed overnight to epinephrine (Epi) 5 nM and/or corticosterone (Cort) 1 μM or prior water-avoidance stress. Patch clamp recordings, visceromotor reflexes (VMRs) and molecular studies were conducted.
Water-avoidance stress induced neuronal hyperexcitability. Incubation of DRG neurons in both Cort and Epi (but neither alone) induced hyperexcitability (rheobase decreased 51%, p < 0.05; action potential discharge increased 95%, p < 0.01); this was blocked by antagonists of the β2 adrenoreceptor (butoxamine, But) and Cort receptor (mifepristone) in combination or alone. Stress hormones enhanced voltage-gated Nav 1.7 currents (p < 0.05) and suppressed IA (p < 0.0001) and IK+ (p < 0.05) currents. Furthermore, stress hormones increased DRG β2 adrenoreceptor mRNA (59%, p = 0.007) and protein (125%, p < 0.05), also Nav 1.7 transcript (45%, p = 0.004) and protein (114%, p = 0.002). In whole-animal studies, the WAS hyperexcitability of DRG neurons was blocked by antagonists of the β2 and glucocorticoid receptors (GCR) but together they paradoxically increased VMRs to colorectal balloon distension.
CONCLUSIONS & INFERENCES: Stress mediators Epi and Cort activate β2 and GCR on DRG neurons which synergistically induce hyperexcitability of nociceptive DRG neurons and cause corresponding changes in voltage-gated Na(+) and K(+) currents. Furthermore, they increase the expression of β2 adrenoreceptors and Nav1.7 channels, suggesting transcriptional changes could contribute to sustained signaling following stress. The paradoxical effects of But and mifepristone in electrophysiological compared to VMR testing may reflect different peripheral and central actions on sensory signaling.
应激激素可以向结肠背根神经节(DRG)神经元发出信号,并可能在伤害感受器的持续过度兴奋中发挥作用。
将小鼠 DRG 神经元暴露于肾上腺素(Epi)5 nM 和/或皮质酮(Cort)1 μM 中过夜,或进行水回避应激。进行膜片钳记录、内脏反射(VMR)和分子研究。
水回避应激诱导神经元过度兴奋。DRG 神经元在 Cort 和 Epi 孵育(但两者均不单独孵育)诱导过度兴奋(基强度降低 51%,p < 0.05;动作电位放电增加 95%,p < 0.01);这可以通过β2 肾上腺素受体(butoxamine,But)和 Cort 受体(米非司酮)拮抗剂联合或单独阻断。应激激素增强电压门控 Nav 1.7 电流(p < 0.05)并抑制 IA(p < 0.0001)和 IK+(p < 0.05)电流。此外,应激激素增加 DRGβ2 肾上腺素受体 mRNA(59%,p = 0.007)和蛋白(125%,p < 0.05),也增加 Nav 1.7 转录物(45%,p = 0.004)和蛋白(114%,p = 0.002)。在整体动物研究中,β2 和糖皮质激素受体(GCR)拮抗剂阻断了 WAS 对 DRG 神经元的过度兴奋,但它们一起协同增加了对结直肠球囊扩张的 VMR。
应激介质 Epi 和 Cort 激活 DRG 神经元上的β2 和 GCR,协同诱导伤害感受性 DRG 神经元过度兴奋,并导致电压门控 Na+和 K+电流相应变化。此外,它们增加β2 肾上腺素受体和 Nav1.7 通道的表达,这表明转录变化可能有助于应激后的持续信号传递。But 和 mifepristone 在电生理测试中的效果与 VMR 测试中的效果相反,这可能反映了对感觉信号的不同外周和中枢作用。