Suppr超能文献

应变工程对磷掺杂 ZnO 电子性质的调制。

Strain-engineered modulation on the electronic properties of phosphorous-doped ZnO.

机构信息

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan,250100 (China); School of Space Science and Physics, Shandong University, Weihai, 264209, (China).

出版信息

Chemphyschem. 2013 Dec 2;14(17):3916-24. doi: 10.1002/cphc.201300664. Epub 2013 Nov 8.

Abstract

The modulation of strain on the electronic properties of ZnO:P is investigated by density functional theory calculations. The variation of formation energy (E(f)) and band structure with strains ranging from -0.1 to 0.1 are considered. Although both the conduction band minimum (CBM) and the valence band maximum of ZnO are antibonding states, the CBM is more sensitive to strain, reducing the band gap with an increase in strain. P-substituted O (PO) defects show poor p-type conductivity due to a smaller E(f) and lower lying acceptor levels as a consequence of lattice expansion. The E(f) of P-substituted Zn (PZn) defects decreases under tension, owing to the release of strong repulsive stress induced by excess electrons from PZn. The donor energy band of PZn broadens under tensile strain, which benefits n-type conductivity. For Zn vacancies (VZn) and PZn-2VZn complexes, the distances between the O atoms around VZn are so large that repulsive and attractive interactions become weak, which results in an easy release of the strain. We herein present for the first time that the E(f) values of VZn and PZn-2VZn complexes decrease under both tension and compression, or in the high-pressure rock-salt phase. Under a strain of 0.1 the PZn-2VZn complex shows the smallest E(f). Under -0.07 strain the wurtzite/rock-salt phase transition occurs and the direct band gap becomes an indirect one. The variation of band structures in the rock-salt phase is similar to that in the wurtzite phase. Consequently, the p-type conductivity of ZnO:P can be improved with an increase in solubility of PZn-2VZn or VZn defects.

摘要

通过密度泛函理论计算研究了应变对 ZnO:P 电子性质的调制。考虑了应变范围从-0.1 到 0.1 时形成能(E(f))和能带结构的变化。尽管 ZnO 的导带底(CBM)和价带顶都是反键态,但 CBM 对应变更敏感,随着应变的增加而减小能带隙。由于晶格膨胀,P 取代 O(PO)缺陷的 E(f)较小,受主能级较低,因此表现出较差的 p 型导电性。由于 PZn 中的过量电子释放出强烈的排斥应力,P 取代 Zn(PZn)缺陷的 E(f)在拉伸下减小。PZn 施主能带在拉伸应变下变宽,有利于 n 型导电性。对于 Zn 空位(VZn)和 PZn-2VZn 复合物,VZn 周围 O 原子之间的距离非常大,排斥和吸引相互作用变得很弱,导致应变容易释放。本文首次提出,VZn 和 PZn-2VZn 复合物的 E(f)在拉伸和压缩下,或者在高压岩盐相中均减小。在 0.1 的应变量下,PZn-2VZn 复合物具有最小的 E(f)。在-0.07 的应变量下,发生了纤锌矿/岩盐相转变,直接带隙变为间接带隙。岩盐相中的能带结构变化与纤锌矿相中的相似。因此,随着 PZn-2VZn 或 VZn 缺陷的溶解度增加,ZnO:P 的 p 型导电性可以得到改善。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验