Suppr超能文献

通过单轴拉伸应变实现 GeS/SnS 横向异质结构中载流子的完全分离。

Complete Separation of Carriers in the GeS/SnS Lateral Heterostructure by Uniaxial Tensile Strain.

机构信息

Center for Nano Science and Technology, College of Chemistry and Material Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University , Wuhu 241000, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40969-40977. doi: 10.1021/acsami.7b11613. Epub 2017 Nov 7.

Abstract

The strategy of forming lateral heterostructures by stitching various two-dimensional materials overcomes the limitations due to the restricted properties of single-component materials. In this work, by using first-principles calculations, the electronic properties of GeS/SnS lateral heterostructures, together with the effect of strain, were systematically investigated. The results showed that with increasing tensile strain along the zigzag direction the band gap displays an extremely interesting variation: it linearly increases in the beginning until 2.4% strain (region I), then remains nearly constant until 5.7% (region II), and finally linearly decreases within the tensile limit (region III). Meanwhile, the electronic properties successively change from quasi-type II alignment to direct band gap to type II alignment with complete carrier separation. Analysis of the densities of states and partial charge densities indicates that the band gap increase in region I is due to the change in the orbital contributions to the states of the conduction band minimum (CBM) from Sn-p to Sn-p, whereas the band gap decrease in region III is caused by an increasingly loose distribution of antibonding electrons at the CBM. Moreover, it was found that the changes in the orbital constituents from Sn-p to Sn-p in the CBM and from S-p to S-p in the valence band maximum are responsible for the indirect-direct and direct-indirect band gap crossovers at the junctions of regions I and II and regions II and III, respectively. Finally, through calculations of the carrier concentrations on the basis of deformation potential theory, electrons and holes are demonstrated to be largely separated with the enhancement of strain, and the predicted electron mobilities in the armchair direction at 7% strain are as high as 5860-11 220 cm V s. We believe our work may lead to potential applications for GeS-SnS heterostructures in electronics, optoelectronics, and straintronics.

摘要

通过将各种二维材料缝合在一起形成横向异质结构的策略克服了由于单一成分材料的限制而导致的限制。在这项工作中,通过使用第一性原理计算,系统地研究了 GeS/SnS 横向异质结构的电子性质以及应变的影响。结果表明,随着沿锯齿方向的拉伸应变的增加,带隙呈现出非常有趣的变化:在开始时线性增加,直到 2.4%的应变(区域 I),然后在 5.7%(区域 II)之前几乎保持不变,最后在拉伸极限内线性减小(区域 III)。同时,电子性质从准 II 型排列到直接带隙再到完全载流子分离的 II 型排列连续变化。态密度和部分电荷密度的分析表明,区域 I 中带隙的增加是由于轨道对导带底(CBM)的贡献从 Sn-p 变为 Sn-p 的变化所致,而区域 III 中带隙的减小是由于 CBM 中反键电子的分布越来越松散。此外,发现 CBM 中 Sn-p 轨道成分和价带顶中 S-p 轨道成分从 Sn-p 到 Sn-p 以及从 S-p 到 S-p 的变化分别导致了区域 I 和 II 以及区域 II 和 III 交界处的间接-直接和直接-间接带隙交叉。最后,通过基于变形势理论的载流子浓度计算,随着应变的增强,电子和空穴被证明是大量分离的,在 7%应变下沿扶手椅方向预测的电子迁移率高达 5860-11220cm V s。我们相信我们的工作可能会导致 GeS-SnS 异质结构在电子学、光电学和应变电子学中的潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验