Suppr超能文献

基于硫酸软骨素的 3D 支架,内含 MWCNTs,用于神经组织修复。

Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair.

机构信息

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

出版信息

Biomaterials. 2014 Feb;35(5):1543-51. doi: 10.1016/j.biomaterials.2013.11.017. Epub 2013 Nov 27.

Abstract

Nervous tissue lesions are an important social concern due to their increasing prevalence and their high sanitary costs. Their treatment still remains a challenge because of the reduced ability of nervous tissue to regenerate, its intrinsic structural and functional complexity and the rapid formation of fibroglial scars inhibiting neural repair. Herein, we show that 3D porous scaffolds made of chondroitin sulphate (CS), a major regulatory component of the nervous tissue, and multi-walled carbon nanotubes (MWCNTs) are selective substrates for the formation of a viable and neuron-enriched network with a transitory low glial content. Scaffolds have been fabricated by using the ice segregation-induced self-assembly technique and cultured with embryonic neural progenitor cells. Cell adhesion, morphology, viability, neuron/glial differentiation, calcium signaling dynamics, and mitochondrial activity have been studied over time on the scaffolds and compared to appropriate 2D control substrates. Our results indicate the formation of viable cultures enriched in neuron cells for up to 20 days, with ability to display calcium transients and active mitochondria, even in the absence of poly-D-lysine coating. A synergistic neural-permissive signaling from both the scaffold structure and its components (i.e., MWCNTs and CS) is suggested as the major responsible factor for these findings. We anticipate that these scaffolds may serve nerve regeneration if implanted in the acute phase after injury, as it is during the first stages of graft implantation when the most critical sequence of phenomena takes place to drive either nervous regeneration or fibroglial scar formation. The temporary glial inhibition found may be, indeed, beneficial for promoting the formation of neuron-enriched circuits at early phases while guaranteeing posterior glial integration to support longer-term neuron survival and activity.

摘要

神经组织损伤是一个重要的社会关注点,因为它们的发病率不断增加,且卫生成本很高。由于神经组织再生能力下降、内在结构和功能复杂以及纤维胶质瘢痕的快速形成抑制了神经修复,其治疗仍然是一个挑战。在此,我们展示了由硫酸软骨素(CS)和多壁碳纳米管(MWCNTs)制成的 3D 多孔支架,CS 是神经组织的主要调节成分,是形成具有短暂低神经胶质含量的有活力和富含神经元的网络的选择性基质。支架是通过冰分离诱导的自组装技术制造的,并与胚胎神经祖细胞一起培养。研究了细胞在支架上的黏附、形态、活力、神经元/神经胶质分化、钙信号动力学和线粒体活性随时间的变化,并与适当的 2D 对照底物进行了比较。我们的结果表明,在没有聚-D-赖氨酸涂层的情况下,培养物在长达 20 天的时间内保持活力,并富含神经元细胞,能够显示钙瞬变和活跃的线粒体。支架结构及其成分(即 MWCNTs 和 CS)的协同神经允许信号可能是这些发现的主要原因。我们预计,如果在损伤后的急性期植入这些支架,它们可能有助于神经再生,因为在移植物植入的早期阶段发生了最关键的一系列现象,这些现象要么促进神经再生,要么促进纤维胶质瘢痕形成。在早期阶段,发现的短暂神经胶质抑制可能确实有利于促进富含神经元的回路的形成,同时保证后期神经胶质的整合,以支持更长时间的神经元存活和活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验