Suppr超能文献

《使用解剖磁共振成像和扩散张量成像对脑发育进行定量评估》重印版

Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging".

作者信息

Oishi Kenichi, Faria Andreia V, Yoshida Shoko, Chang Linda, Mori Susumu

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Int J Dev Neurosci. 2014 Feb;32:28-40. doi: 10.1016/j.ijdevneu.2013.11.006. Epub 2013 Dec 2.

Abstract

The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.

摘要

大脑的发育具有结构特异性,每个结构的生长速度因个体年龄而异。磁共振成像(MRI)因其具有高空间分辨率和对比度,能够观察特定结构的发育状况,常被用于评估大脑发育。目前,大多数临床MRI检查是进行定性评估,以辅助临床决策和诊断。临床MRI报告通常不提供可用于监测发育状况的定量值。最近,图像量化对于检测和评估轻度至中度解剖学异常的重要性得到了强调,因为这些改变可能与多种精神疾病和学习障碍有关。在研究领域,结构MRI和扩散张量成像(DTI)已被广泛应用于量化儿童群体的大脑发育。为了解释这些磁共振成像模式得到的值,需要一个“生长百分位图”,它描述了每个解剖结构正常发育曲线的均值和标准差。尽管已经努力基于MRI和DTI创建这样的生长百分位图,但最大的挑战之一是标准化所测量解剖结构的解剖边界。为了避免读者之间和读者内部在解剖边界定义上的差异,从而提高定量测量的精度,已经开发了一种针对新生儿和儿童群体定制的自动结构分割方法。这种方法能够使用通用分析框架对多种磁共振成像模式进行量化。本文介绍了创建基于MRI和DTI的生长百分位图的尝试,以及随后用于研究与脑瘫、威廉姆斯综合征和雷特综合征相关的发育异常的应用。未来的方向包括多模态图像分析和临床应用的个性化。

相似文献

1
Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging".
Int J Dev Neurosci. 2014 Feb;32:28-40. doi: 10.1016/j.ijdevneu.2013.11.006. Epub 2013 Dec 2.
2
Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging.
Int J Dev Neurosci. 2013 Nov;31(7):512-24. doi: 10.1016/j.ijdevneu.2013.06.004. Epub 2013 Jun 21.
3
A Bayesian approach to the creation of a study-customized neonatal brain atlas.
Neuroimage. 2014 Nov 1;101:256-67. doi: 10.1016/j.neuroimage.2014.07.001. Epub 2014 Jul 12.
6
Multi-contrast human neonatal brain atlas: application to normal neonate development analysis.
Neuroimage. 2011 May 1;56(1):8-20. doi: 10.1016/j.neuroimage.2011.01.051. Epub 2011 Jan 26.

本文引用的文献

1
Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model.
PLoS One. 2013 Jun 18;8(6):e65591. doi: 10.1371/journal.pone.0065591. Print 2013.
2
Anatomical characterization of athetotic and spastic cerebral palsy using an atlas-based analysis.
J Magn Reson Imaging. 2013 Aug;38(2):288-98. doi: 10.1002/jmri.23931. Epub 2013 Jun 4.
3
Atlas-based neuroinformatics via MRI: harnessing information from past clinical cases and quantitative image analysis for patient care.
Annu Rev Biomed Eng. 2013;15:71-92. doi: 10.1146/annurev-bioeng-071812-152335. Epub 2013 Apr 29.
4
Diffusion tensor imaging of normal brain development.
Pediatr Radiol. 2013 Jan;43(1):15-27. doi: 10.1007/s00247-012-2496-x. Epub 2013 Jan 4.
5
Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study.
Lancet. 2012 Aug 4;380(9840):499-505. doi: 10.1016/S0140-6736(12)60815-0. Epub 2012 Jun 7.
6
Performing label-fusion-based segmentation using multiple automatically generated templates.
Hum Brain Mapp. 2013 Oct;34(10):2635-54. doi: 10.1002/hbm.22092. Epub 2012 May 19.
7
Neuroimaging features of xeroderma pigmentosum group A.
Brain Behav. 2012 Jan;2(1):1-5. doi: 10.1002/brb3.22.
9
Quantitative analysis of gray and white matter in Williams syndrome.
Neuroreport. 2012 Mar 28;23(5):283-9. doi: 10.1097/WNR.0b013e3283505b62.
10
Novel applications of quantitative MRI for the fetal brain.
Pediatr Radiol. 2012 Jan;42 Suppl 1:S24-32. doi: 10.1007/s00247-011-2178-0. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验