Suppr超能文献

利用拉曼光谱对大肠杆菌抗生素反应特征进行表型分析。

Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy.

作者信息

Athamneh A I M, Alajlouni R A, Wallace R S, Seleem M N, Senger R S

机构信息

Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

Antimicrob Agents Chemother. 2014;58(3):1302-14. doi: 10.1128/AAC.02098-13. Epub 2013 Dec 2.

Abstract

Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research.

摘要

确定新型潜在抗生素的作用机制是一个必要但耗时且成本高昂的过程。表型分析已被有效利用,以促进对未表征药物的作用机制和分子靶点的发现。在本研究中,拉曼光谱用于分析大肠杆菌对应用抗生素的表型反应。使用拉曼光谱具有优势,因为它是非侵入性的、无需标记且易于自动化,并且其结果可以实时获得。在本研究中,在通过拉曼光谱(使用532nm激发波长)分析之前,将大肠杆菌培养物用15种不同抗生素(代表五种功能抗生素类别)的三倍最低抑菌浓度处理30分钟,这些抗生素具有已知的作用机制。所得的拉曼光谱包含足够的生化信息,以区分同一类别的个别抗生素所诱导的谱型。收集的光谱数据用于建立判别分析模型,该模型可识别未知抗生素化合物对大肠杆菌培养物表型的影响。化学计量分析表明,拉曼光谱能够预测未知抗生素的功能类别,并识别引起相似表型反应的个别抗生素。本研究结果证明了拉曼光谱作为一种细胞表型分析方法的强大功能及其对抗生素药物开发研究的潜在影响。

相似文献

1
Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy.
Antimicrob Agents Chemother. 2014;58(3):1302-14. doi: 10.1128/AAC.02098-13. Epub 2013 Dec 2.
3
5
Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment.
Anal Bioanal Chem. 2011 Jul;400(9):2763-73. doi: 10.1007/s00216-011-4819-4. Epub 2011 Mar 20.
6
Raman Spectroscopy-Based Measurements of Single-Cell Phenotypic Diversity in Microbial Populations.
mSphere. 2020 Oct 28;5(5):e00806-20. doi: 10.1128/mSphere.00806-20.
7
Simple Ciprofloxacin Resistance Test and Determination of Minimal Inhibitory Concentration within 2 h Using Raman Spectroscopy.
Anal Chem. 2018 Feb 6;90(3):1811-1818. doi: 10.1021/acs.analchem.7b03800. Epub 2018 Jan 11.
8
Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Aug 5;183:395-401. doi: 10.1016/j.saa.2017.04.077. Epub 2017 Apr 27.
10
Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy.
Eur J Clin Microbiol Infect Dis. 2017 Jan;36(1):81-89. doi: 10.1007/s10096-016-2773-y. Epub 2016 Sep 8.

引用本文的文献

1
2
Unlocking the mechanism of action: a cost-effective flow cytometry approach for accelerating antimicrobial drug development.
Microbiol Spectr. 2024 Apr 2;12(4):e0393123. doi: 10.1128/spectrum.03931-23. Epub 2024 Mar 14.
3
Adaptive laboratory evolution of in acid stress.
Front Microbiol. 2023 Nov 16;14:1285421. doi: 10.3389/fmicb.2023.1285421. eCollection 2023.
4
Opportunities in optical and electrical single-cell technologies to study microbial ecosystems.
Front Microbiol. 2023 Aug 25;14:1233705. doi: 10.3389/fmicb.2023.1233705. eCollection 2023.
5
Rapid discrimination of spp. and label-free surface enhanced Raman spectroscopy coupled with machine learning algorithms.
Front Microbiol. 2023 Mar 8;14:1101357. doi: 10.3389/fmicb.2023.1101357. eCollection 2023.
6
Nanogap traps for passive bacteria concentration and single-point confocal Raman spectroscopy.
Biomicrofluidics. 2023 Mar 6;17(2):024101. doi: 10.1063/5.0142118. eCollection 2023 Mar.
7
Phenotypic convergence of bacterial adaption to sub-lethal antibiotic treatment.
Front Cell Infect Microbiol. 2022 Nov 17;12:913415. doi: 10.3389/fcimb.2022.913415. eCollection 2022.
8
Rapid label-free detection of cholangiocarcinoma from human serum using Raman spectroscopy.
PLoS One. 2022 Oct 13;17(10):e0275362. doi: 10.1371/journal.pone.0275362. eCollection 2022.
9
Single-cell Raman spectroscopy identifies persisters and reveals their enhanced metabolic activities.
Front Microbiol. 2022 Aug 4;13:936726. doi: 10.3389/fmicb.2022.936726. eCollection 2022.
10
Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopic/computational analysis.
PLoS One. 2022 Jul 18;17(7):e0270914. doi: 10.1371/journal.pone.0270914. eCollection 2022.

本文引用的文献

1
Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.
Chem Biol. 2013 Feb 21;20(2):272-84. doi: 10.1016/j.chembiol.2012.11.013.
2
Target identification of small molecules based on chemical biology approaches.
Mol Biosyst. 2013 May;9(5):897-914. doi: 10.1039/c2mb25468a.
3
Morphobase, an encyclopedic cell morphology database, and its use for drug target identification.
Chem Biol. 2012 Dec 21;19(12):1620-30. doi: 10.1016/j.chembiol.2012.10.014.
4
Peptide-guided surface-enhanced Raman scattering probes for localized cell composition analysis.
Appl Environ Microbiol. 2012 Nov;78(21):7805-8. doi: 10.1128/AEM.02000-12. Epub 2012 Aug 24.
5
How to pre-process Raman spectra for reliable and stable models?
Anal Chim Acta. 2011 Oct 17;704(1-2):47-56. doi: 10.1016/j.aca.2011.06.043. Epub 2011 Jul 31.
6
Antibiotics and the post-genome revolution.
Curr Opin Microbiol. 2011 Oct;14(5):513-8. doi: 10.1016/j.mib.2011.07.017. Epub 2011 Aug 3.
7
Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment.
Anal Bioanal Chem. 2011 Jul;400(9):2763-73. doi: 10.1007/s00216-011-4819-4. Epub 2011 Mar 20.
8
Challenges of antibacterial discovery.
Clin Microbiol Rev. 2011 Jan;24(1):71-109. doi: 10.1128/CMR.00030-10.
9
Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers.
J Clin Microbiol. 2010 Nov;48(11):4287-90. doi: 10.1128/JCM.01565-10. Epub 2010 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验