Suppr超能文献

利用拉曼光谱/计算分析检测到 COVID-19 患者尿液中分子组成的变化。

Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopic/computational analysis.

机构信息

Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, Virginia, United States of America.

Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America.

出版信息

PLoS One. 2022 Jul 18;17(7):e0270914. doi: 10.1371/journal.pone.0270914. eCollection 2022.

Abstract

We developed and tested a method to detect COVID-19 disease, using urine specimens. The technology is based on Raman spectroscopy and computational analysis. It does not detect SARS-CoV-2 virus or viral components, but rather a urine 'molecular fingerprint', representing systemic metabolic, inflammatory, and immunologic reactions to infection. We analyzed voided urine specimens from 46 symptomatic COVID-19 patients with positive real time-polymerase chain reaction (RT-PCR) tests for infection or household contact with test-positive patients. We compared their urine Raman spectra with urine Raman spectra from healthy individuals (n = 185), peritoneal dialysis patients (n = 20), and patients with active bladder cancer (n = 17), collected between 2016-2018 (i.e., pre-COVID-19). We also compared all urine Raman spectra with urine specimens collected from healthy, fully vaccinated volunteers (n = 19) from July to September 2021. Disease severity (primarily respiratory) ranged among mild (n = 25), moderate (n = 14), and severe (n = 7). Seventy percent of patients sought evaluation within 14 days of onset. One severely affected patient was hospitalized, the remainder being managed with home/ambulatory care. Twenty patients had clinical pathology profiling. Seven of 20 patients had mildly elevated serum creatinine values (>0.9 mg/dl; range 0.9-1.34 mg/dl) and 6/7 of these patients also had estimated glomerular filtration rates (eGFR) <90 mL/min/1.73m2 (range 59-84 mL/min/1.73m2). We could not determine if any of these patients had antecedent clinical pathology abnormalities. Our technology (Raman Chemometric Urinalysis-Rametrix®) had an overall prediction accuracy of 97.6% for detecting complex, multimolecular fingerprints in urine associated with COVID-19 disease. The sensitivity of this model for detecting COVID-19 was 90.9%. The specificity was 98.8%, the positive predictive value was 93.0%, and the negative predictive value was 98.4%. In assessing severity, the method showed to be accurate in identifying symptoms as mild, moderate, or severe (random chance = 33%) based on the urine multimolecular fingerprint. Finally, a fingerprint of 'Long COVID-19' symptoms (defined as lasting longer than 30 days) was located in urine. Our methods were able to locate the presence of this fingerprint with 70.0% sensitivity and 98.7% specificity in leave-one-out cross-validation analysis. Further validation testing will include sampling more patients, examining correlations of disease severity and/or duration, and employing metabolomic analysis (Gas Chromatography-Mass Spectrometry [GC-MS], High Performance Liquid Chromatography [HPLC]) to identify individual components contributing to COVID-19 molecular fingerprints.

摘要

我们开发并测试了一种使用尿液样本检测 COVID-19 疾病的方法。该技术基于拉曼光谱和计算分析。它不检测 SARS-CoV-2 病毒或病毒成分,而是检测尿液的“分子指纹”,代表感染引起的全身代谢、炎症和免疫反应。我们分析了 46 例有症状的 COVID-19 患者的尿液样本,这些患者的实时聚合酶链反应(RT-PCR)检测结果为感染或与检测阳性患者有家庭接触。我们将他们的尿液拉曼光谱与 185 名健康个体、20 名腹膜透析患者和 17 名患有活动性膀胱癌的患者(2016-2018 年采集,即 COVID-19 之前)的尿液拉曼光谱进行了比较。我们还将所有尿液拉曼光谱与 2021 年 7 月至 9 月期间从健康、完全接种疫苗的志愿者(n=19)采集的尿液样本进行了比较。疾病严重程度(主要为呼吸道)分为轻度(n=25)、中度(n=14)和重度(n=7)。70%的患者在发病后 14 天内就诊。一名病情严重的患者住院,其余患者在家/门诊接受治疗。20 名患者进行了临床病理特征分析。20 名患者中有 7 名血清肌酐值轻度升高(>0.9mg/dl;范围 0.9-1.34mg/dl),其中 6/7 名患者的肾小球滤过率(eGFR)<90mL/min/1.73m2(范围 59-84mL/min/1.73m2)。我们无法确定这些患者中是否有人有先前的临床病理异常。我们的技术(Raman Chemometric Urinalysis-Rametrix®)对检测 COVID-19 疾病相关的复杂、多分子尿液指纹具有 97.6%的总体预测准确性。该模型检测 COVID-19 的灵敏度为 90.9%。特异性为 98.8%,阳性预测值为 93.0%,阴性预测值为 98.4%。在评估严重程度时,该方法能够根据尿液的多分子指纹准确识别症状为轻度、中度或重度(随机概率为 33%)。最后,在尿液中定位到了“长 COVID-19”症状(定义为持续时间超过 30 天)的指纹。我们的方法在留一法交叉验证分析中能够以 70.0%的灵敏度和 98.7%的特异性定位到这种指纹的存在。进一步的验证测试将包括采集更多患者的样本,检查疾病严重程度和/或持续时间的相关性,并采用代谢组学分析(气相色谱-质谱联用[GC-MS]、高效液相色谱[HPLC])来鉴定导致 COVID-19 分子指纹的单个成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba8/9292080/8970318b638a/pone.0270914.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验