Suppr超能文献

综合多通道多维逆流色谱法从丹参中分离丹参酮。

Comprehensive multi-channel multi-dimensional counter-current chromatography for separation of tanshinones from Salvia miltiorrhiza Bunge.

机构信息

Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences Zhejiang University, Hangzhou 310058, China.

Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.

出版信息

J Chromatogr A. 2014 Jan 3;1323:73-81. doi: 10.1016/j.chroma.2013.10.095. Epub 2013 Nov 6.

Abstract

Multi-dimensional chromatography offers the increased resolution and peak capacity by coupling of multiple columns with the same or different separation mechanisms. In this work, a novel multi-channel multi-dimensional counter-current chromatography (CCC) has been successfully constructed and used for several two-dimensional (2D) and three-dimensional (3D) CCC separations including 2D A×B/A×C, A×B-C and A-B×C, and 3D A×B×C systems. These 2D and 3D CCC systems were further applied to separate the bioactive tanshinones from the extract of Tanshen (or Danshen, Salvia miltiorrhiza Bunge), a famous Traditional Chinese Medicine (TCM). As a result, the developed 2D and 3D CCC methods were successful and efficient for resolving the tanshinones from complex extracts. Compared to the 1D multiple columns CCC separation, the 2D and 3D CCC decrease analysis time, reduce solvent consumption and increase sample throughput significantly. It may be widely used for current drug development, metabolomic analysis and natural product isolation.

摘要

多维色谱通过将具有相同或不同分离机制的多根色谱柱进行串联,从而提供了更高的分辨率和峰容量。在这项工作中,成功构建了一种新型的多通道多维逆流色谱(CCC),并将其用于多种二维(2D)和三维(3D)CCC 分离,包括 2D A×B/A×C、A×B-C 和 A-B×C,以及 3D A×B×C 系统。这些 2D 和 3D CCC 系统进一步用于从丹参(丹参,丹参)提取物中分离生物活性丹参酮,丹参是一种著名的中药(TCM)。结果,开发的 2D 和 3D CCC 方法成功且高效地从复杂提取物中解析出丹参酮。与 1D 多柱 CCC 分离相比,2D 和 3D CCC 显著缩短了分析时间,减少了溶剂消耗并增加了样品通量。它可能广泛用于当前的药物开发、代谢组学分析和天然产物分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验