Uesugi Mai, Ojima Atsuko, Taniguchi Tomohiko, Miyamoto Norimasa, Sawada Kohei
Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Department of Genomics-Based Drug Discovery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
Biopharmaceutical Assessments Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
J Pharmacol Toxicol Methods. 2014 Mar-Apr;69(2):177-88. doi: 10.1016/j.vascn.2013.11.002. Epub 2013 Dec 1.
Cardiac hypertrophy is a leading cause of many cardiovascular diseases, including heart failure, but its pathological mechanism is not fully understood. This study used highly purified human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes to produce an in vitro hypertrophy model and characterize its gene expression and electrophysiological properties.
For 7 days we cultured hiPSC-derived cardiomyocytes plated at high (2800-4800 cells/mm(2)) or low (500-1200 cells/mm(2)) cell density and assessed their cell size with confocal and fluorescence microscopy, their electrophysiological and pharmacological responses with multi-electrode array systems, and their gene expression patterns by using DNA microarray technology and quantitative PCR. We used quantitative PCR and Western blotting to compare the expression of potassium-channel genes between the hiPSC-derived cardiomyocytes and human fetal and adult hearts.
The hiPSC-derived cardiomyocytes showed spontaneous beating and similar pattern of α-actinin molecules regardless of plating density. However, cells plated at low density had the following characteristics compared with those at high density: 1) significant enlargement in size; 2) significant increase or decrease in expression of the cardiac hypertrophy-characteristic genes NPPA, ATP2A2, ANKRD1 and MYL2 in accordance with the progression of hypertrophy; 3) significant reduction in responses to the inhibitors of cardiac slow delayed-rectifier K(+) current (IKs), chromanol 293B and HMR1556, in a cell-density-dependent manner; and 4) significant reduction in the expression of the KCNQ1 and KCNJ2 genes coding the K(+) ion channels conducting each IKs and cardiac inward rectifier outward K(+) current (IK1).
The enlargement, hypertrophy-characteristic and potassium ion channels gene expression of hiPSC-derived cardiomyocytes suggest that low-density plating was sufficient to induce cardiac hypertrophy. This model may be useful in elucidating mechanisms underlying the onset and progress of cardiac hypertrophy, because these cells can be cultured for several weeks.
心肌肥厚是包括心力衰竭在内的许多心血管疾病的主要原因,但其病理机制尚未完全明确。本研究利用高度纯化的人诱导多能干细胞(hiPSC)衍生的心肌细胞建立体外肥厚模型,并对其基因表达和电生理特性进行表征。
我们以高(2800 - 4800个细胞/mm²)或低(500 - 1200个细胞/mm²)细胞密度接种hiPSC衍生的心肌细胞,培养7天,并用共聚焦和荧光显微镜评估其细胞大小,用多电极阵列系统评估其电生理和药理反应,并用DNA微阵列技术和定量PCR评估其基因表达模式。我们使用定量PCR和蛋白质免疫印迹法比较hiPSC衍生的心肌细胞与人类胎儿和成人心脏中钾通道基因的表达。
无论接种密度如何,hiPSC衍生的心肌细胞均表现出自发搏动以及相似的α - 辅肌动蛋白分子模式。然而,与高密度接种的细胞相比,低密度接种的细胞具有以下特征:1)细胞大小显著增大;2)随着肥厚进展,心脏肥厚特征基因NPPA、ATP2A2、ANKRD1和MYL2的表达显著增加或减少;3)对心脏缓慢延迟整流钾电流(IKs)抑制剂色满卡林293B和HMR1556的反应以细胞密度依赖性方式显著降低;4)编码传导每个IKs和心脏内向整流外向钾电流(IK1)的钾离子通道的KCNQ1和KCNJ2基因的表达显著降低。
hiPSC衍生的心肌细胞的增大、肥厚特征以及钾离子通道基因表达表明,低密度接种足以诱导心肌肥厚。该模型可能有助于阐明心肌肥厚发生和进展的潜在机制,因为这些细胞可以培养数周。