Jung Gwanghyun, Fajardo Giovanni, Ribeiro Alexandre J S, Kooiker Kristina Bezold, Coronado Michael, Zhao Mingming, Hu Dong-Qing, Reddy Sushma, Kodo Kazuki, Sriram Krishna, Insel Paul A, Wu Joseph C, Pruitt Beth L, Bernstein Daniel
*Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA.
*Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
FASEB J. 2016 Apr;30(4):1464-79. doi: 10.1096/fj.15-280982. Epub 2015 Dec 16.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used β-adrenergic receptor (β-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), β2-ARs are a primary source of cAMP/PKA signaling. With longer culture, β1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic β-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, β-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of β-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.
人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)是揭示疾病机制和评估药物疗效/毒性的强大平台。然而,hiPSC-CMs重现成年心肌细胞收缩和重塑信号传导的准确性尚不完全清楚。我们以β-肾上腺素能受体(β-AR)信号传导为原型,来确定hiPSC-CM成熟过程中信号成分表达和功能的演变。在“早期”hiPSC-CMs(小于或等于30天)中,β2-ARs是cAMP/PKA信号传导的主要来源。随着培养时间延长,β1-AR信号传导增加:从第30天cAMP生成的0%增加到第60天的56.8±6.6%。PKA信号传导也有类似增加:15.7±5.2%(第30天)、49.8±0.5%(第60天)和71.0±6.1%(第90天)。从第30天到第60天,cAMP生成增加了9倍,与重塑途径(如Akt和钙/钙调蛋白依赖性蛋白激酶II型)的偶联增强,并且出现了小窝蛋白介导的信号分隔。相比之下,慢性β-AR刺激诱导的心脏毒性(心力衰竭的主要组成部分)出现得要晚得多:第30天细胞死亡率为5%,而第90天为55%。此外,生物力学刺激可加速β-AR成熟。hiPSC-CMs中β-AR功能与重塑信号传导的差异成熟对其在疾病建模和药物测试中的应用具有重要意义。我们建议将信号传导评估纳入hiPSC-CMs表型成熟指标中。-荣格,G.,法贾多,G.,里贝罗,A.J.S.,库伊克,K.B.,科罗纳多,M.,赵,M.,胡,D.-Q.,雷迪,S.,小堂,K.,斯里拉姆,K.,英塞尔,P.A.,吴,J.C.,普鲁伊特,B.L.,伯恩斯坦,D.诱导多能干细胞衍生心肌细胞中功能与重塑信号传导的时间依赖性演变及生物力学刺激诱导的成熟