Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium; and.
J Nucl Med. 2014 Jan;55(1):135-40. doi: 10.2967/jnumed.113.126839. Epub 2013 Dec 2.
(90)Y resin and glass microsphere liver radioembolizations delivering lobar doses of 70 and 120 Gy, respectively, display hepatic toxicity similar to 40-Gy fractionated external-beam radiotherapy. We investigated how the lower number of glass microspheres could induce a sufficiently nonuniform dose distribution explaining this paradox.
Microscale dosimetry was assessed in the realistic liver model developed by Gulec et al. but using the Russell's dose deposition kernel. A lattice of hexagonal prisms represented the hepatic lobules. Two hepatic arterial tree models-that is, a fixed-length and a variable-branches length-were used for the microsphere transport. Equal or asymmetric microsphere relative-spreading probability between 2 daughter vessels was assumed. Several 120-Gy liver simulations were performed: periodic simulations, where 1 or 6 glass microspheres were trapped in all and in only 1 of 6 portal tracts, respectively, and random simulations, where glass microsphere trapping assumed an equal probability for all the portal tracts or a variable probability depending on the successions of artery connections leading to the portal tract, both for the 2 arterial tree models.
For the 2 uniform simulations, all hepatic structures received at least 100 Gy. The fast decrease of the (90)Y kernel as the inverse of the square of the distance r is counterbalanced by the number of contributing lobules containing microspheres that increases as r(2). The random simulation with equal-spreading probability gave for the less irradiated tissue a lobule dose distribution centered around 103 Gy (full width at half maximum, 20 Gy). The distribution became significantly asymmetric with the 60%-40% relative-spreading probability, with a shift of the maximum from 103 down to 50 Gy, and about 17% of the lobules got a dose lower than 40 Gy to their different structures.
The large nonuniform trapping produced by the microsphere transport in the arterial tree jointly with the low number of injected glass microspheres begins to explain their lower hepatic toxicity per Gray. In addition, the nonuniform trapping supports the fact that the granular aspect of (90)Y PET imaging observed in patients could represent some reality and not only statistical noise.
(90)Y 树脂和玻璃微球肝放射性栓塞分别提供 70 和 120 Gy 的叶剂量,显示出与 40 Gy 分割外照射放疗相似的肝毒性。我们研究了为什么较少数量的玻璃微球可以诱导足够的不均匀剂量分布,从而解释这种矛盾。
在 Gulec 等人开发的真实肝脏模型中进行微尺度剂量测定,但使用 Russell 的剂量沉积核。晶格的六方棱柱代表肝小叶。使用两种肝动脉树模型 - 即固定长度和可变分支长度 - 进行微球输送。假设两个子血管之间的玻璃微球相对扩散概率相等或不对称。对几个 120 Gy 的肝脏模拟进行了周期性模拟,其中一个或六个玻璃微球分别在所有和仅在六个门静脉之一中捕获,以及随机模拟,其中玻璃微球捕获在所有门静脉中具有相等的概率,或者根据导致门静脉的动脉连接的顺序,具有可变的概率,这两种情况均适用于两种动脉树模型。
对于两种均匀模拟,所有肝结构都接收到至少 100 Gy。(90)Y 核的快速下降与距离 r 的平方的倒数成反比,被包含微球的贡献小叶数量的增加所抵消,该数量随着 r(2)的增加而增加。具有相等扩散概率的随机模拟为受照射较少的组织提供了以 103 Gy 为中心的小叶剂量分布(半最大值全宽,20 Gy)。当相对扩散概率为 60%-40%时,分布变得明显不对称,最大剂量从 103 下降到 50 Gy,并且大约 17%的小叶的剂量低于 40 Gy 到它们的不同结构。
微球在动脉树中的运输产生的大的非均匀捕获,以及注入的玻璃微球的数量较少,开始解释它们每 Gray 的较低肝毒性。此外,非均匀捕获支持这样一个事实,即患者中观察到的(90)Y PET 成像的颗粒状方面可能代表一些现实,而不仅仅是统计噪声。