Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
Nuclear Medicine, Molecular Imaging, Radiotherapy, and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium.
J Nucl Med. 2014 Aug;55(8):1317-22. doi: 10.2967/jnumed.113.135301. Epub 2014 Jun 5.
The 50% normal-tissue complication probability (NTCP) after lobar irradiation of the liver results in highly variable biologic effective doses depending on the modality used: a biologic effective dose for 50% (BED50) of 115, 93, and 250 Gy for external-beam radiotherapy, resin microsphere radioembolization, and glass microsphere radioembolization, respectively. This misunderstood property has made it difficult to predict the maximal tolerable dose as a function of microsphere activity and targeted liver volume. The evolution toward more selective catheterization techniques, resulting in more variable targeted volumes, makes it urgent to solve this issue.
We computed by Monte Carlo simulations the microsphere distribution in the portal triads based on microsphere transport dynamics through a synthetically grown hepatic arterial tree. Afterward, the microscale dose distribution was computed using a dose deposition kernel. We showed that the equivalent uniform dose cannot handle microscale dosimetry and fails to solve the discordance between the BED50 values. Consequently, we developed a new radiobiologic model to compute the liver NTCP from the microscale dose distribution.
The new model explains all the observed BED50 values and provides a way to compute the hepatic dose-toxicity relationship as a function of microsphere activity and targeted liver volume. The NTCP obtained is in agreement with the data reported from clinical radioembolization studies.
The results should encourage interventional radiologists to fine-tune the delivered dose to the liver as a function of the targeted volume. The present model could be used as the backbone of the treatment planning, allowing optimization of the absorbed dose to the tumors.
肝脏叶照射后,正常组织并发症概率(NTCP)为 50%,这导致生物有效剂量因所使用的方式而异:外照射放疗、树脂微球放射性栓塞和玻璃微球放射性栓塞的 50%生物有效剂量(BED50)分别为 115、93 和 250Gy。这种被误解的特性使得难以根据微球活性和靶向肝体积预测最大耐受剂量。向更具选择性的导管技术的发展导致靶向体积更具变异性,这使得解决这个问题变得紧迫。
我们通过蒙特卡罗模拟计算了基于微球通过合成生长的肝动脉树的传输动力学在门脉三联体中的微球分布。此后,使用剂量沉积核计算微尺度剂量分布。我们表明,等效均匀剂量不能处理微尺度剂量测量,并且无法解决 BED50 值之间的不匹配。因此,我们开发了一种新的放射生物学模型,从微尺度剂量分布计算肝脏 NTCP。
新模型解释了所有观察到的 BED50 值,并提供了一种方法来计算作为微球活性和靶向肝体积函数的肝剂量-毒性关系。获得的 NTCP 与临床放射性栓塞研究报告的数据一致。
结果应该鼓励介入放射科医生根据靶向体积调整肝脏的给药剂量。目前的模型可作为治疗计划的基础,允许优化肿瘤的吸收剂量。