Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Trombay, Mumbai-400085, India.
J Phys Chem B. 2013 Dec 27;117(51):16479-85. doi: 10.1021/jp4100697. Epub 2013 Dec 13.
Raman spectroscopy in combination with multivariate curve resolution (Raman-MCR) is used to explore the interaction between water and various kosmotropic and chaotropic anions. Raman-MCR of aqueous Na-salt (NaI, NaBr, NaNO3, Na2SO4, and Na3PO4) solutions provides solute-correlated Raman spectra (SC-spectra) of water. The SC-spectra predominantly bear the vibrational characteristics of water in the hydration shell of anions, because Na(+)-cation has negligible effect on the OH stretch band of water. The SC-spectra for the chaotropic I(-), Br(-), and NO3(-) anions and even for the kosmotropic SO4(2-) anion resemble the Raman spectrum of isotopically diluted water (H2O/D2O = 1/19; v/v) whose OH stretch band is largely comprised by the response of vibrationally decoupled OH oscillators. On the other hand, the SC-spectrum for the kosmotropic PO4(3-) anion is quite similar to the Raman spectrum of H2O (bulk). Comparison of the peak positions of SC-spectra and the Raman spectrum of isotopically diluted water suggests that the hydrogen bond strength of water in the hydration shell of SO4(2-) is comparable to that of the isotopically diluted water, but that in the hydration shell of I(-), Br(-), and NO3(-) anions is weaker than that of the latter. Analysis of integrated area of component bands of the SC-spectra reveals ∼80% reduction of the delocalization of vibrational modes (intermolecular coupling and Fermi resonance) of water in the hydration shell of I(-), Br(-), NO3(-), and SO4(2-) anions. In the case of trivalent PO4(3-), the vibrational delocalization is presumably reduced and the corresponding decrease in spectral response at ∼3250 cm(-1) is compensated by the increased signal of strongly hydrogen bonded (but decoupled) water species in the hydration shell. The peak area-averaged wavenumber of the SC-spectrum increases as PO4(3-) < SO4(2-) < NO3(-) < Br(-) < I(-) and indeed suggests strong hydrogen bonding of water in the hydration shell of PO4(3-) anion.
拉曼光谱结合多元曲线分辨(Raman-MCR)用于研究水与各种等渗和变渗阴离子的相互作用。水的 Na 盐(NaI、NaBr、NaNO3、Na2SO4 和 Na3PO4)溶液的 Raman-MCR 提供了水的溶质相关拉曼光谱(SC-光谱)。SC 光谱主要带有阴离子水合壳中水分子的振动特征,因为 Na(+)阳离子对水的 OH 伸缩带几乎没有影响。对于变渗的 I(-)、Br(-)和 NO3(-)阴离子,甚至对于等渗的 SO4(2-)阴离子,SC 光谱类似于同位稀释水(H2O/D2O = 1/19;v/v)的拉曼光谱,其 OH 伸缩带主要由振动去耦 OH 振荡器的响应组成。另一方面,等渗的 PO4(3-)阴离子的 SC 光谱与 H2O(本体)的拉曼光谱非常相似。SC 光谱的峰位与同位稀释水的拉曼光谱的比较表明,SO4(2-)水合壳中的氢键强度与同位稀释水相当,但 I(-)、Br(-)和 NO3(-)阴离子水合壳中的氢键强度比后者弱。SC 光谱组分带积分面积的分析表明,I(-)、Br(-)、NO3(-)和 SO4(2-)阴离子水合壳中水分子振动模式的离域(分子间耦合和费米共振)减少了约 80%。对于三价 PO4(3-),振动离域可能减少,水合壳中氢键强烈但去耦的水分子物种的信号增加,从而补偿了约 3250 cm(-1)处光谱响应的相应减少。SC 光谱的峰面积平均波数随着 PO4(3-)<SO4(2-)<NO3(-)<Br(-)<I(-)的增加而增加,确实表明 PO4(3-)阴离子水合壳中氢键的强度很强。