Suppr超能文献

基于模型的不确定性下的剂量发现,使用通用参数模型。

Model-based dose finding under model uncertainty using general parametric models.

机构信息

Janssen Research & Development, Raritan, NJ, USA.

出版信息

Stat Med. 2014 May 10;33(10):1646-61. doi: 10.1002/sim.6052. Epub 2013 Dec 3.

Abstract

The statistical methodology for the design and analysis of clinical Phase II dose-response studies, with related software implementation, is well developed for the case of a normally distributed, homoscedastic response considered for a single timepoint in parallel group study designs. In practice, however, binary, count, or time-to-event endpoints are encountered, typically measured repeatedly over time and sometimes in more complex settings like crossover study designs. In this paper, we develop an overarching methodology to perform efficient multiple comparisons and modeling for dose finding, under uncertainty about the dose-response shape, using general parametric models. The framework described here is quite broad and can be utilized in situations involving for example generalized nonlinear models, linear and nonlinear mixed effects models, Cox proportional hazards models, with the main restriction being that a univariate dose-response relationship is modeled, that is, both dose and response correspond to univariate measurements. In addition to the core framework, we also develop a general purpose methodology to fit dose-response data in a computationally and statistically efficient way. Several examples illustrate the breadth of applicability of the results. For the analyses, we developed the R add-on package DoseFinding, which provides a convenient interface to the general approach adopted here.

摘要

用于设计和分析临床 II 期剂量反应研究的统计方法,以及相关的软件实现,对于在平行组研究设计中考虑的正态分布、同方差响应的情况已经得到了很好的发展。然而,在实践中,通常会遇到二进制、计数或事件时间终点,这些终点通常随着时间的推移多次测量,有时在更复杂的设置中,如交叉研究设计。在本文中,我们开发了一种总体方法,使用通用参数模型在对剂量反应形状不确定的情况下进行有效的剂量发现的多重比较和建模。这里描述的框架非常广泛,可以用于涉及例如广义非线性模型、线性和非线性混合效应模型、Cox 比例风险模型的情况,主要限制是建模单变量剂量反应关系,即剂量和响应都对应于单变量测量。除了核心框架外,我们还开发了一种通用的方法来以计算和统计有效的方式拟合剂量反应数据。几个例子说明了结果的广泛适用性。对于分析,我们开发了 R 附加包 DoseFinding,它为采用的通用方法提供了方便的接口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验