Suppr超能文献

用于序贯治疗决策的最优动态治疗方案的稳健估计。

Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions.

作者信息

Zhang Baqun, Tsiatis Anastasios A, Laber Eric B, Davidian Marie

机构信息

Department of Preventive Medicine, 680 N. Lakeshore Drive, Suite 1400 Northwestern University, Chicago, Illinois, 60611 U.S.A.

出版信息

Biometrika. 2013;100(3). doi: 10.1093/biomet/ast014.

Abstract

A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method's performance and robustness to model misspecification, which is a key concern.

摘要

动态治疗方案是一系列基于患者病史分配治疗的顺序决策规则。Q学习和A学习是基于临床试验或观察性研究的数据估计最优方案(即在患者群体中产生最有益结果的方案)的两种主要方法。Q学习需要假定结果的回归模型,而A学习涉及结果回归中代表治疗对比的部分以及治疗分配的模型。我们提出了一种替代Q学习和A学习的方法,该方法在受限的方案类别中最大化总体平均结果的双重稳健增强逆概率加权估计器。模拟证明了该方法对模型误设的性能和稳健性,这是一个关键问题。

相似文献

3
Imputation-based Q-learning for optimizing dynamic treatment regimes with right-censored survival outcome.
Biometrics. 2023 Dec;79(4):3676-3689. doi: 10.1111/biom.13872. Epub 2023 May 17.
4
Optimal two-stage dynamic treatment regimes from a classification perspective with censored survival data.
Biometrics. 2018 Dec;74(4):1180-1192. doi: 10.1111/biom.12894. Epub 2018 May 18.
5
Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes.
Stat Sci. 2014 Nov;29(4):640-661. doi: 10.1214/13-STS450.
6
Ascertaining properties of weighting in the estimation of optimal treatment regimes under monotone missingness.
Stat Med. 2020 Nov 10;39(25):3503-3520. doi: 10.1002/sim.8678. Epub 2020 Jul 30.
8
C-learning: A new classification framework to estimate optimal dynamic treatment regimes.
Biometrics. 2018 Sep;74(3):891-899. doi: 10.1111/biom.12836. Epub 2017 Dec 11.
9
Improved doubly robust estimation in learning optimal individualized treatment rules.
J Am Stat Assoc. 2021;116(533):283-294. doi: 10.1080/01621459.2020.1725522. Epub 2020 Sep 8.
10
Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective.
Lifetime Data Anal. 2017 Oct;23(4):585-604. doi: 10.1007/s10985-016-9376-x. Epub 2016 Aug 1.

引用本文的文献

1
A Bayesian multivariate hierarchical model for developing a treatment benefit index using mixed types of outcomes.
BMC Med Res Methodol. 2024 Sep 27;24(1):218. doi: 10.1186/s12874-024-02333-z.
2
Learning optimal dynamic treatment regimes from longitudinal data.
Am J Epidemiol. 2024 Dec 2;193(12):1768-1775. doi: 10.1093/aje/kwae122.
3
Machine Learning and Health Science Research: Tutorial.
J Med Internet Res. 2024 Jan 30;26:e50890. doi: 10.2196/50890.
4
BATCH POLICY LEARNING IN AVERAGE REWARD MARKOV DECISION PROCESSES.
Ann Stat. 2022 Dec;50(6):3364-3387. doi: 10.1214/22-aos2231. Epub 2022 Dec 21.
5
Semiparametric single-index models for optimal treatment regimens with censored outcomes.
Lifetime Data Anal. 2022 Oct;28(4):744-763. doi: 10.1007/s10985-022-09566-4. Epub 2022 Aug 8.
6
A general framework for subgroup detection via one-step value difference estimation.
Biometrics. 2023 Sep;79(3):2116-2126. doi: 10.1111/biom.13711. Epub 2022 Aug 2.
7
Deep reinforcement learning for personalized treatment recommendation.
Stat Med. 2022 Sep 10;41(20):4034-4056. doi: 10.1002/sim.9491. Epub 2022 Jun 18.
10
High-Dimensional Precision Medicine From Patient-Derived Xenografts.
J Am Stat Assoc. 2021;116(535):1140-1154. doi: 10.1080/01621459.2020.1828091. Epub 2020 Nov 12.

本文引用的文献

1
A robust method for estimating optimal treatment regimes.
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
3
Regret-regression for optimal dynamic treatment regimes.
Biometrics. 2010 Dec;66(4):1192-201. doi: 10.1111/j.1541-0420.2009.01368.x.
4
Reinforcement learning design for cancer clinical trials.
Stat Med. 2009 Nov 20;28(26):3294-315. doi: 10.1002/sim.3720.
5
Inference for non-regular parameters in optimal dynamic treatment regimes.
Stat Methods Med Res. 2010 Jun;19(3):317-43. doi: 10.1177/0962280209105013. Epub 2009 Jul 16.
6
Structural nested mean models for assessing time-varying effect moderation.
Biometrics. 2010 Mar;66(1):131-9. doi: 10.1111/j.1541-0420.2009.01238.x. Epub 2009 Apr 13.
7
Estimation and extrapolation of optimal treatment and testing strategies.
Stat Med. 2008 Oct 15;27(23):4678-721. doi: 10.1002/sim.3301.
8
Demystifying optimal dynamic treatment regimes.
Biometrics. 2007 Jun;63(2):447-55. doi: 10.1111/j.1541-0420.2006.00686.x.
9
Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders.
Neuropsychopharmacology. 2007 Feb;32(2):257-62. doi: 10.1038/sj.npp.1301241. Epub 2006 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验