Suppr超能文献

用于估计最优动态治疗方案的动态模式边际结构均值模型,第一部分:主要内容。

Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.

作者信息

Orellana Liliana, Rotnitzky Andrea, Robins James M

机构信息

Instituto de Cálculo, Universidad de Buenos Aires, Argentine.

出版信息

Int J Biostat. 2010;6(2):Article 8.

Abstract

Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.

摘要

动态治疗方案是基于患者协变量历史进行序贯决策的既定规则。观察性研究非常适合用于调查动态治疗方案的效果,因为其中存在治疗决策的变异性。这种变异性的存在是因为面对相似的患者病史时,不同的医生会做出不同的决策。在本文中,我们描述了一种在一组可实施的方案中估计最优动态治疗方案的方法。这组方案由基于过去信息子集的简单规则定义的方案组成。该组中的方案由欧几里得向量索引。最优方案是在该组所有方案中使预期反事实效用最大化的方案。我们讨论了在哪些假设下可以从观察性纵向数据中识别出最优方案。墨菲等人(2001年)开发了一种有效的增广逆概率加权估计器,用于估计一个固定方案的预期效用。我们的方法基于罗宾斯(1998年、1999年)的边际结构均值模型的扩展,该扩展纳入了墨菲等人(2001年)的估计思想。我们的模型,我们称之为动态方案边际结构均值模型,特别适合在一类适度小的感兴趣的可实施方案中估计最优治疗方案。我们考虑参数化和半参数化的动态方案边际结构模型。我们讨论了模型参数以及该组中最优治疗方案索引的局部有效、双稳健估计。在本期杂志的一篇配套论文中,我们提供了主要结果的证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验