Liu Yanli, Fan Xiaoping, Zhang Heng
School of Information Science and Engineering, Central South University, Changsha 410075, China ; School of Information Engineering, East China Jiaotong University, Nanchang 330013, China.
ScientificWorldJournal. 2013 Nov 2;2013:169635. doi: 10.1155/2013/169635. eCollection 2013.
In recent years, the research on single-robot simultaneous localization and mapping (SLAM) has made a great success. However, multirobot SLAM faces many challenging problems, including unknown robot poses, unshared map, and unstable communication. In this paper, a map merging algorithm based on virtual robot motion is proposed for multi-robot SLAM. The thinning algorithm is used to construct the skeleton of the grid map's empty area, and a mobile robot is simulated in one map. The simulated data is used as information sources in the other map to do partial map Monte Carlo localization; if localization succeeds, the relative pose hypotheses between the two maps can be computed easily. We verify these hypotheses using the rendezvous technique and use them as initial values to optimize the estimation by a heuristic random search algorithm.
近年来,单机器人同步定位与地图构建(SLAM)的研究取得了巨大成功。然而,多机器人SLAM面临许多具有挑战性的问题,包括未知的机器人位姿、未共享的地图以及不稳定的通信。本文针对多机器人SLAM提出了一种基于虚拟机器人运动的地图合并算法。采用细化算法构建网格地图空白区域的骨架,并在一张地图中模拟移动机器人。将模拟数据作为另一张地图中的信息源进行局部地图蒙特卡洛定位;如果定位成功,则可以轻松计算出两张地图之间的相对位姿假设。我们使用交会技术验证这些假设,并将其作为初始值,通过启发式随机搜索算法优化估计。