Suppr超能文献

基于视觉-激光融合的自主移动机器人线特征同时定位与建图(SLAM)

Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.

机构信息

School of Electrical and Information Engineering, Jinan University, Zhuhai 519070, Guangdong, China.

出版信息

Sensors (Basel). 2012;12(1):429-52. doi: 10.3390/s120100429. Epub 2012 Jan 4.

Abstract

This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.

摘要

本文提出了一种应用于动态环境下同时定位与建图(SLAM)的传感器融合策略。所设计的方法包括两个特征:(i)第一个是融合模块,它综合了激光测距仪获得的线段和单目相机提取的线特征。该策略消除了激光数据中任何由于动态物体瞬间停顿而产生的伪线段。(ii)第二个特征是一种改进的多传感器点估计融合 SLAM(MPEF-SLAM),它结合了两种基于扩展卡尔曼滤波器(EKF)的独立 SLAM 算法:单目和激光 SLAM。与独立的 SLAM 相比,融合 SLAM 中的定位误差降低了。此外,还为单目 SLAM 开发了一种新的数据关联技术,基于单应性变换矩阵。这种数据关联方法放宽了多余的计算。实验结果验证了所提出的传感器融合和数据关联方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc14/3279222/cfb639e91c9c/sensors-12-00429f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验