Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461.
J Neurosci. 2013 Dec 4;33(49):19167-75. doi: 10.1523/JNEUROSCI.2920-13.2013.
Motion direction is a crucial cue for predicting future states in natural scenes. In the auditory system, the mechanisms that confer direction selectivity to neurons are not well understood. Neither is it known whether sound motion is encoded independently of stationary sound location. Here we investigated these questions in neurons of the owl's external nucleus of the inferior colliculus, where auditory space is represented in a map. Using a high-density speaker array, we show that the preferred direction and the degree of direction selectivity can be predicted by response adaptation to sounds moving over asymmetric spatial receptive fields. At the population level, we found that preference for sounds moving toward frontal space increased with eccentricity in spatial tuning. This distribution was consistent with larger receptive-field asymmetry in neurons tuned to more peripheral auditory space. A model of suppression based on spatiotemporal summation predicted the observations. Thus, response adaptation and receptive-field shape can explain direction selectivity to acoustic motion and an orderly distribution of preferred direction.
运动方向是预测自然场景中未来状态的关键线索。在听觉系统中,赋予神经元方向选择性的机制尚不清楚。也不知道声音运动是否独立于静止的声音位置进行编码。在这里,我们在鸮形目外丘脑中的下丘外部核的神经元中研究了这些问题,在这些神经元中,听觉空间以图谱的形式呈现。我们使用高密度扬声器阵列表明,通过对在不对称空间感受野上移动的声音的反应适应,可以预测到首选方向和方向选择性的程度。在群体水平上,我们发现,对于朝向额空间移动的声音的偏好随着空间调谐的偏心率而增加。该分布与调谐到更外围听觉空间的神经元的更大感受野不对称性一致。基于时空总和的抑制模型预测了这些观察结果。因此,反应适应和感受野形状可以解释对声运动的方向选择性和首选方向的有序分布。