State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
Nanoscale. 2014;6(3):1369-76. doi: 10.1039/c3nr05359h.
Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo₂O₄ materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m(2) g(-1)) and high mesopore volume (0.943 cm(3) g(-1)). Remarkably, the NiCo₂O₄ shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co₃O₄) synthesized by the same procedure. The NiCo₂O₄ electrode delivers a current density of 136 mA cm(-2) mg(-1) at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo₂O₄ materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.
介孔尖晶石镍钴氧化物(NiCo2O4)纳米结构通过简便的化学沉积方法与简单的后退火工艺合成。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线光电子能谱(XPS)和氮气吸附测量对其物理化学性质进行了表征。通过循环伏安法(CV)、计时安培法(CA)和电化学阻抗谱(EIS)测试研究了电催化性能。所获得的 NiCo₂O₄ 材料具有典型的团聚介孔纳米结构,具有大的比表面积(190.1 m(2) g(-1))和高的介孔体积(0.943 cm(3) g(-1))。值得注意的是,与通过相同程序合成的氧化钴(Co₃O₄)相比,NiCo₂O₄ 表现出更高的催化活性、更低的过电势、更好的稳定性和对尿素电氧化的更大耐受性。NiCo₂O₄ 电极在 1 M KOH 和 0.33 M 尿素电解液中,在 0.7 V(相对于 Hg/HgO)下的电流密度为 136 mA cm(-2) mg(-1),具有良好的稳定性。令人印象深刻的电催化活性主要归因于 NiCo₂O₄ 材料的高本征电子电导率、优越的介孔纳米结构和丰富的表面 Ni 活性物质,这大大提高了界面电活性位点和电荷转移速率,用于尿素电氧化,表明其在未来废水处理、制氢和燃料电池中有应用前景。