Suppr超能文献

尿素对NiCo₂O₄纳米结构合成的影响:形态学和电化学研究

Influence of Urea on the Synthesis of NiCo₂O₄ Nanostructure: Morphological and Electrochemical Studies.

作者信息

Guragain D, Zequine C, Poudel T, Neupane D, Gupta R K, Mishra S R

机构信息

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.

Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

出版信息

J Nanosci Nanotechnol. 2020 Apr 1;20(4):2526-2537. doi: 10.1166/jnn.2020.17366.

Abstract

The widespread use of miniature electronic devices calls for energy-dense storage strategies. The supercapacitor-based energy storage devices with high areal capacitance are desired energy storage alternative. It is still a challenge to fabricate supercapacitor-based energy devices with consistent performance. The porous metal oxides with large areal capacitance are desired materials for electrode, but there exists a limited understanding of the influence of synthesis parameters on microstructural properties, which largely govern their electrochemical performance. In the present work, hierarchal spinel nickel cobaltite (NiCo₂O₄) nanostructures were synthesized in the presence of the varying amount of hydrolyzing agent via a simple hydrothermal method coupled with a simple post-annealing process. This work focuses on understanding the influence of hydrolyzing agent in controlling the microstructure and hence ensuing electrochemical properties of the NiCo₂O₄ based electrode. Based on the urea hydrolyzing content, the as synthesized NiCo₂O₄ nanostructure varied from the rod, plate to nanoflower. The mesoporous nanostructures, with urea content 1.49 gm, exhibit a sizeable BJH surface area (79.2 m² g) and high mesopore volume (0.140 cm³ g). Remarkably, the NiCo₂O₄ nanoflower shows high specific capacitance of 3143.451 F/g at 2 mV/s scan rate, 1264.5 F/g at 1 A/g current density, energy density of 56 Wh/kg and power density of 8,400 W/kg in 3 M KOH electrolyte. The capacitance loss after 5000 cycles is 48% at the current density of 10 A/g, indicating their excellent cycling stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo₂O₄ materials, which can largely boost the interfacial electroactive sites and charge transfer rates indicating promising applications as electrodes in future supercapacitors.

摘要

微型电子设备的广泛应用需要能量密集型存储策略。具有高面积电容的基于超级电容器的储能设备是理想的储能替代品。制造性能一致的基于超级电容器的能量设备仍然是一个挑战。具有大的面积电容的多孔金属氧化物是电极的理想材料,但对于合成参数对微观结构性质的影响的理解有限,而微观结构性质在很大程度上决定了它们的电化学性能。在本工作中,通过简单的水热法结合简单的退火后处理工艺,在不同量的水解剂存在下合成了分级尖晶石镍钴矿(NiCo₂O₄)纳米结构。这项工作的重点是了解水解剂在控制微观结构以及由此产生的基于NiCo₂O₄的电极的电化学性质方面的影响。基于尿素水解含量,合成的NiCo₂O₄纳米结构从棒状、板状到纳米花状各不相同。尿素含量为1.49克的介孔纳米结构具有相当大的BJH表面积(79.2平方米/克)和高介孔体积(0.140立方厘米/克)。值得注意的是,NiCo₂O₄纳米花在3M KOH电解液中,在2mV/s扫描速率下显示出3143.451F/g的高比电容,在1A/g电流密度下为1264.5F/g,能量密度为56Wh/kg,功率密度为8400W/kg。在10A/g电流密度下5000次循环后的电容损失为48%,表明其具有优异的循环稳定性。令人印象深刻的电催化活性很大程度上归因于NiCo₂O₄材料的高本征电子导电性、优异的介孔纳米结构和丰富的表面Ni活性物种,这可以大大增加界面电活性位点和电荷转移速率,表明其在未来超级电容器中作为电极具有广阔的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验