基于局部最优分割的可靠性分位数下限。

Quantile lower bounds to reliability based on locally optimal splits.

作者信息

Hunt Tyler D, Bentler Peter M

机构信息

University of Utah, Salt Lake City, USA,

出版信息

Psychometrika. 2015 Mar;80(1):182-95. doi: 10.1007/s11336-013-9393-6. Epub 2013 Dec 5.

Abstract

Extending the theory of lower bounds to reliability based on splits given by Guttman (in Psychometrika 53, 63-70, 1945), this paper introduces quantile lower bound coefficients λ 4(Q) that refer to cumulative proportions of potential locally optimal "split-half" coefficients that are below a particular point Q in the distribution of split-halves based on different partitions of variables into two sets. Interesting quantile values are Q=0.05,0.50,0.95,1.00 with λ 4(0.05)≤λ 4(0.50)≤λ 4(0.95)≤λ 4(1.0). Only the global optimum λ 4(1.0), Guttman's maximal λ 4, has previously been considered to be interesting, but in small samples it substantially overestimates population reliability ρ. The three coefficients λ 4(0.05), λ 4(0.50), and λ 4(0.95) provide new lower bounds to reliability. The smallest, λ 4(0.05), provides the most protection against capitalizing on chance associations, and thus overestimation, λ 4(0.50) is the median of these coefficients, while λ 4(0.95) tends to overestimate reliability, but also exhibits less bias than previous estimators. Computational theory, algorithm, and publicly available code based in R are provided to compute these coefficients. Simulation studies evaluate the performance of these coefficients and compare them to coefficient alpha and the greatest lower bound under several population reliability structures.

摘要

基于古特曼(1945年发表于《心理测量学》第53卷,第63 - 70页)给出的划分,将下限理论扩展到可靠性领域,本文引入了分位数下限系数λ4(Q),该系数指的是基于变量划分为两组的不同划分方式,在“折半”分布中低于特定点Q的潜在局部最优“折半”系数的累积比例。有趣的分位数值为Q = 0.05、0.50、0.95、1.00,且满足λ4(0.05)≤λ4(0.50)≤λ4(0.95)≤λ4(1.0)。此前仅全局最优值λ4(1.0)(即古特曼的最大λ4)被认为是有意义的,但在小样本中它会大幅高估总体可靠性ρ。三个系数λ4(0.05)、λ4(0.50)和λ4(0.95)为可靠性提供了新的下限。最小的λ4(0.05)能最大程度防止利用偶然关联,从而避免高估;λ4(0.50)是这些系数的中位数;而λ4(0.95)虽倾向于高估可靠性,但相较于之前的估计量偏差更小。本文提供了基于R语言的计算理论、算法及公开可用代码来计算这些系数。模拟研究评估了这些系数的性能,并在几种总体可靠性结构下将它们与α系数及最大下限进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索