可靠性系数的准确性:对现有模拟的重新分析。

The accuracy of reliability coefficients: A reanalysis of existing simulations.

机构信息

College of Business Administration, Kwangwoon University.

出版信息

Psychol Methods. 2024 Apr;29(2):331-349. doi: 10.1037/met0000475. Epub 2022 Jan 27.

Abstract

Controversy over which reliability estimators should be used persists due to a lack of knowledge about their accuracy. Simulation is an effective tool to obtain an answer, but existing simulation studies yield contradictory results regarding which reliability estimators are the best. The causes of these inconsistent conclusions have yet to be discussed. This study reanalyzes existing studies to understand these contradictions. The most important reason is that previous studies consider only a few reliability estimators. This study examines approximately 30 reliability estimators and finds that there is no single, most accurate reliability estimator across all data types. Instead, several reliability estimators are accurate to comparable levels for unidimensional data (congeneric reliability, Guttman's lambda2, and ten Berge-Zegers's mu). Likewise, multiple reliability estimators perform similarly for multidimensional data (multidimensional parallel reliability, correlated factors reliability, and second-order factor reliability). Whereas many recent studies support factor analysis (FA) reliability estimators, this study shows that not all FA reliability estimators are accurate and that some cause severe overestimation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

由于缺乏对其准确性的了解,关于应该使用哪些可靠性估计量的争议仍然存在。模拟是获得答案的有效工具,但现有的模拟研究在哪些可靠性估计量是最好的方面得出了相互矛盾的结果。这些不一致结论的原因尚未讨论。本研究重新分析了现有研究,以了解这些矛盾。最重要的原因是以前的研究只考虑了少数几个可靠性估计量。本研究检验了大约 30 个可靠性估计量,发现没有一个单一的、最准确的可靠性估计量适用于所有数据类型。相反,对于单维数据,有几个可靠性估计量的准确性相当(同质性可靠性、古特曼的 lambda2 和 ten Berge-Zegers 的 mu)。同样,对于多维数据,多个可靠性估计量的性能相似(多维平行可靠性、相关因子可靠性和二阶因子可靠性)。虽然许多最近的研究支持因子分析(FA)可靠性估计量,但本研究表明,并非所有 FA 可靠性估计量都是准确的,有些估计量会导致严重的高估。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索