Environmental and Analytical Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology University, Vellore-632 014 (India), Fax: (+91) 416-2202754.
Chemistry. 2013 Dec 9;19(50):17103-12. doi: 10.1002/chem.201303075. Epub 2013 Nov 6.
A new biomimetic functional system having an impure multiwalled carbon nanotube (MWCNT-Fe)-chitosan biopolymer (H2N-CHIT) chemically modified glassy carbon electrode (GCE/[MWCNT-Fe:H2N-CHIT]) has been developed and demonstrated efficient hydrogen peroxide electrocatalytic and electrochemical sensing applications in pH 7 phosphate buffer solution (PBS). The hybrid system showed a stable and well-defined surface confined redox peak at an apparent electrode potential, E°'=-0.22 V versus Ag/AgCl with surface excess value 13.63 nmol cm(-2). Physicochemical characterizations of the hybrid by using FESEM, TEM, Raman spectroscopy, FTIR, and various control electrochemical experiments revealed that the iron impurity in the MWCNT interacted with the amino functional group of the chitosan polymer and thereby formed an unique complex-like structure ([MWCNT-Fe(III/II):NH2-CHIT]), similar to heme peroxidase with a central Fe(III/II)-redox-active site. The biomimetic system followed Michaelis-Menten-type reaction kinetics for the H2O2 reduction reaction with a K(M) value of 0.23 mM. At pH 7, amperometric i-t sensing and flow-injection analysis of H2O2 on the biomimetic system showed calibration plots in windows 5-500 and 50-2500 μM, with detection-limit values of 2.3 and 9.7 μM, respectively. Unlike most of the previously reported systems that undergo serious interferences in physiological pH, the biomimetic system displayed a remarkable tolerance to other co-existing interferants (such as cysteine, ascorbic acid, uric acid, nitrate, and nitrite), at a H2O2 detection potential similar to the peroxidase enzyme. The ability of the biosensor system to perform routine analyses was demonstrated by the detection of H2O2 present in simulated milk and clinical and cosmetic samples with appreciable recovery values.
一种新型仿生功能体系,具有不纯的多壁碳纳米管(MWCNT-Fe)-壳聚糖生物聚合物(H2N-CHIT)化学修饰玻碳电极(GCE/[MWCNT-Fe:H2N-CHIT]),已被开发并证明在 pH 7 磷酸盐缓冲溶液(PBS)中对过氧化氢具有高效的电催化和电化学传感应用。该混合体系在明显的电极电位 E°'=-0.22 V (相对于 Ag/AgCl)下表现出稳定且定义明确的表面受限氧化还原峰,表面过剩值为 13.63 nmol cm(-2)。通过使用 FESEM、TEM、拉曼光谱、FTIR 和各种控制电化学实验对混合体系进行的物理化学特性分析表明,MWCNT 中的铁杂质与壳聚糖聚合物的氨基官能团相互作用,从而形成独特的类似配合物的结构([MWCNT-Fe(III/II):NH2-CHIT]),类似于具有中心 Fe(III/II)-氧化还原活性位点的血红素过氧化物酶。仿生体系对过氧化氢还原反应遵循米氏动力学,K(M)值为 0.23 mM。在 pH 7 下,仿生体系对过氧化氢的安培电流 i-t 传感和流动注射分析显示在 5-500 和 50-2500 μM 的窗口中有校准图,检测限分别为 2.3 和 9.7 μM。与大多数先前报道的在生理 pH 下会受到严重干扰的体系不同,仿生体系对其他共存干扰物(如半胱氨酸、抗坏血酸、尿酸、硝酸盐和亚硝酸盐)具有显著的耐受性,在与过氧化物酶类似的过氧化氢检测电位下。通过检测模拟牛奶和临床及化妆品样品中存在的过氧化氢,证明了生物传感器系统进行常规分析的能力,具有可接受的回收率值。