Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (P. R. China), Fax: (+86) 451-8666-1259.
Chemistry. 2014 Jan 7;20(2):564-74. doi: 10.1002/chem.201303345. Epub 2013 Dec 4.
An advanced supercapacitor material based on nitrogen-doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination-pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen-enriched structure and the strong interaction between the amine groups and the glucose unit. A low-temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine-glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer-Emmett-Teller surface area (SBET =1027 m(2) g(-1) ), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g(-1) at 1 A g(-1) ), long-term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two-electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg(-1) , at a high power density (10.5 kW kg(-1) ), were achieved in 6 M KOH and 1 M Et4 NBF4 -PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices.
一种基于具有高比表面积的氮掺杂多孔石墨碳(NPGC)的先进超级电容器材料是通过简单的配位-热解组合工艺合成的,其中正硅酸乙酯(TEOS)、硝酸镍和葡萄糖分别用作孔原剂、石墨催化剂前体和碳源。此外,由于三聚氰胺具有富氮结构和胺基与葡萄糖单元之间的强相互作用,选择三聚氰胺作为氮源。低温处理导致催化前体、水解的 TEOS 和三聚氰胺-葡萄糖单元结合形成 NPGC 前体。经过热解和催化剂及孔原剂的去除,NPGC 材料表现出优异的导电性,这归因于其高结晶度、大 Brunauer-Emmett-Teller 比表面积(SBET=1027 m2 g-1)和高氮水平(7.72wt%)。NPGC 材料的异常微观结构可以提供电化学储能。NPGC 材料无需任何导电添加剂,在用作电极时,在 KOH 中表现出出色的电容性能(在 1 A g-1时为 293 F g-1)、长期循环稳定性和高库仑效率(超过 5000 次循环时>99.9%)。值得注意的是,在两电极对称超级电容器中,在 6 M KOH 和 1 M Et4 NBF4-PC 电解质中,NPGC 的能量密度分别高达 8.1 和 47.5 Wh kg-1,在 10.5 kW kg-1的高功率密度下,实现了高达 8.1 和 47.5 Wh kg-1的能量密度。因此,合成的 NPGC 材料可能是先进超级电容器和其他转换设备的极具前途的电极材料。