Suppr超能文献

ergm用户术语:用于扩展statnet的模板包。

ergm.userterms: A Template Package for Extending statnet.

作者信息

Hunter David R, Goodreau Steven M, Handcock Mark S

机构信息

Pennsylvania State University.

出版信息

J Stat Softw. 2013 Feb 1;52(2):i02.

Abstract

Exponential-family random graph models (ERGMs) represent a powerful and flexible class of models for the statistical analysis of networks. is a suite of software packages that implement these models. This paper details how the capabilities for ERGM modeling can be expanded and customized by programming additional network statistics that may be included in ERGMs. We describe a template R package called that can be modified for this purpose. It is designed to make this process as straightforward as possible. We also explain some of the internal workings of that will help users develop their own network analysis capabilities.

摘要

指数族随机图模型(ERGMs)是用于网络统计分析的一类强大且灵活的模型。 是一组实现这些模型的软件包。本文详细介绍了如何通过对可能包含在ERGMs中的其他网络统计量进行编程来扩展和定制ERGM建模功能。我们描述了一个名为 的模板R包,可为此目的进行修改。其设计目的是使这个过程尽可能简单直接。我们还解释了 的一些内部工作原理,这将有助于用户开发自己的网络分析功能。

相似文献

3
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.
J Stat Softw. 2008 May 1;24(3):nihpa54860. doi: 10.18637/jss.v024.i03.
4
Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects.
J Stat Softw. 2008;24(4):1548-7660. doi: 10.18637/jss.v024.i04.
5
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices.
PLoS One. 2022 Aug 26;17(8):e0273039. doi: 10.1371/journal.pone.0273039. eCollection 2022.
6
Practical Network Modeling via Tapered Exponential-family Random Graph Models.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
7
Improving Simulation-Based Algorithms for Fitting ERGMs.
J Comput Graph Stat. 2012 Dec 13;21(4):920-939. doi: 10.1080/10618600.2012.679224.
8
Exponential-family random graph models for valued networks.
Electron J Stat. 2012;6:1100-1128. doi: 10.1214/12-EJS696.
9
A survey on exponential random graph models: an application perspective.
PeerJ Comput Sci. 2020 Apr 6;6:e269. doi: 10.7717/peerj-cs.269. eCollection 2020.
10
Exponential random graph model parameter estimation for very large directed networks.
PLoS One. 2020 Jan 24;15(1):e0227804. doi: 10.1371/journal.pone.0227804. eCollection 2020.

引用本文的文献

1
Stochastic step-wise feature selection for Exponential Random Graph Models (ERGMs).
PLoS One. 2024 Dec 17;19(12):e0314557. doi: 10.1371/journal.pone.0314557. eCollection 2024.
2
Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin.
J Phys Chem B. 2023 Jan 26;127(3):685-697. doi: 10.1021/acs.jpcb.2c07672. Epub 2023 Jan 13.
5
Reconstructing Archaeological Networks with Structural Holes.
J Archaeol Method Theory. 2018;25(1):226-253. doi: 10.1007/s10816-017-9335-1. Epub 2017 Apr 21.

本文引用的文献

1
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.
J Stat Softw. 2008 May 1;24(3):nihpa54860. doi: 10.18637/jss.v024.i03.
2
Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects.
J Stat Softw. 2008;24(4):1548-7660. doi: 10.18637/jss.v024.i04.
4
A statnet Tutorial.
J Stat Softw. 2008 May;24(9):1-27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验