Blackburn Bart, Handcock Mark S
University of California, Los Angeles, Statistics, Los Angeles, United States.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
Exponential-family Random Graph Models (ERGMs) have long been at the forefront of the analysis of relational data. The exponential-family form allows complex network dependencies to be represented. Models in this class are interpretable, flexible and have a strong theoretical foundation. The availability of powerful user-friendly open-source software allows broad accessibility and use. However, ERGMs sometimes suffer from a serious condition known as near-degeneracy, in which the model exhibits unrealistic probabilistic behavior or a severe lack-of-fit to real network data. Recently, Fellows and Handcock (2017) proposed a new model class, the Tapered ERGM, which circumvents the issue of near-degeneracy while maintaining the desirable features of ERGMs. However, the question of how to determine the proper amount of tapering needed for any model was heretofore left unanswered. This paper develops a new methodology for how to determine the necessary level of tapering and as such provides a new approach to inference for the Tapered ERGM class. Noting that a Tapered ERGM can always be made non-degenerate, we offer data-driven approaches for determining the amount of tapering necessary. The mean-value parameter estimates are unaffected by tapering, and we show that the natural parameter estimates are numerically weakly varying by the level of tapering. We then apply the Tapered ERGM to two published networks to demonstrate its effectiveness in cases where typical ERGMs fail and present the case for Tapered ERGMs replacing ERGMs entirely.
指数族随机图模型(ERGMs)长期以来一直处于关系数据分析的前沿。指数族形式允许表示复杂的网络依赖性。这类模型具有可解释性、灵活性且有坚实的理论基础。强大的用户友好型开源软件的可用性使得其能够被广泛使用。然而,ERGMs有时会遭受一种被称为近似退化的严重情况,即模型表现出不现实的概率行为或与真实网络数据严重不拟合。最近,费洛斯和汉德科克(2017)提出了一种新的模型类别,即渐缩ERGM,它在保持ERGMs理想特性的同时规避了近似退化问题。然而,此前如何确定任何模型所需的适当渐缩量这一问题一直未得到解答。本文开发了一种确定所需渐缩水平的新方法,从而为渐缩ERGM类别提供了一种新的推断方法。注意到渐缩ERGM总是可以变得非退化,我们提供了数据驱动的方法来确定所需的渐缩量。均值参数估计不受渐缩的影响,并且我们表明自然参数估计在数值上随渐缩水平的变化很小。然后我们将渐缩ERGM应用于两个已发表的网络,以证明其在典型ERGMs失败的情况下的有效性,并提出用渐缩ERGMs完全取代ERGMs的理由。