Suppr超能文献

无结构蛋白聚集体的网络哈密顿模型及其在 γD-晶体蛋白中的应用。

Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin.

机构信息

Department of Chemistry, University of California, Irvine, California92697, United States.

Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, California92697, United States.

出版信息

J Phys Chem B. 2023 Jan 26;127(3):685-697. doi: 10.1021/acs.jpcb.2c07672. Epub 2023 Jan 13.

Abstract

Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of protein-protein interactions, in which each node corresponds to a protein, and edges are drawn between nodes representing proteins that are noncovalently bound. Here, this framework is applied to aggregates of γD-crystallin, a structural protein of the eye lens implicated in cataract disease. The NHMs in this study are generated from atomistic simulations of equilibrium distributions of wild-type and the cataract-causing variant W42R in solution, performed by Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. , (), 3691-3699. Network models are shown to successfully reproduce the aggregate size and structure observed in the atomistic simulation, and provide information about the transient protein-protein interactions therein. The system size is scaled from the original 375 monomers to a system of 10000 monomers, revealing a lowering of the upper tail of the aggregate size distribution of the W42R variant. Extrapolation to higher and lower concentrations is also performed. These results provide an example of the utility of NHMs for coarse-grained simulation of protein systems, as well as their ability to scale to large system sizes and high concentrations, reducing computational costs while retaining topological information about the system.

摘要

网络哈密顿模型(NHMs)是一种对蛋白质-蛋白质相互作用进行拓扑粗粒化的框架,其中每个节点对应一个蛋白质,而代表非共价结合的蛋白质的节点之间存在边。在这里,该框架被应用于γD-晶状体蛋白聚集体的研究,γD-晶状体蛋白是眼睛晶状体的一种结构蛋白,与白内障疾病有关。在这项研究中,NHMs 是根据 Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. 在溶液中对野生型和引起白内障的变体 W42R 的平衡分布进行的原子模拟生成的,Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations., (), 3691-3699. 网络模型成功地再现了原子模拟中观察到的聚集体大小和结构,并提供了其中瞬态蛋白质-蛋白质相互作用的信息。将系统大小从原始的 375 个单体缩小到 10000 个单体的系统,揭示了 W42R 变体聚集体大小分布的上限降低。还进行了更高和更低浓度的外推。这些结果提供了 NHMs 用于粗粒化模拟蛋白质系统的有效性的示例,以及它们能够扩展到更大的系统大小和更高的浓度的能力,从而降低计算成本,同时保留系统的拓扑信息。

相似文献

本文引用的文献

3
Protein aggregation: in silico algorithms and applications.蛋白质聚集:计算机模拟算法及其应用
Biophys Rev. 2021 Jan 17;13(1):71-89. doi: 10.1007/s12551-021-00778-w. eCollection 2021 Feb.
6
Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M.大流行早期突变对 SARS-CoV-2 M 分子动力学的影响。
J Chem Inf Model. 2020 Oct 26;60(10):5080-5102. doi: 10.1021/acs.jcim.0c00634. Epub 2020 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验