Diffenderfer Eric S, Dolney Derek, Schaettler Maximilian, Sanzari Jenine K, McDonough James, Cengel Keith A
Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, 8-136 SCTR Philadelphia, PA 19104, USA.
J Radiat Res. 2014 Mar 1;55(2):364-72. doi: 10.1093/jrr/rrt118. Epub 2013 Dec 5.
The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.
空间辐射环境增加了暴露于电离辐射的危险,尤其是在太阳粒子事件(SPE)期间。这些事件主要由产生高度不均匀剂量分布的低能质子组成。由于这种固有的剂量异质性,旨在研究SPE辐射的放射生物学效应的实验在评估和解释对敏感器官的剂量时存在困难。为应对这一挑战,我们使用Geant4蒙特卡罗模拟框架开发了剂量测定软件,该软件使用计算机断层扫描(CT)图像,并提供包含所有相关物理相互作用过程的辐射传输模拟。我们发现,这种模拟能够准确预测模型中的测量数据,并可应用于对暴露于带电粒子(电子和质子)束的动物模型进行放射生物学实验中的剂量建模。这项研究清楚地证明了蒙特卡罗辐射传输方法在两个密切相关的重要用途中的价值:(i)确定使用类似SPE辐射进行动物实验时特定器官系统的总体剂量分布和剂量水平,以及(ii)解释实验变量(例如长时间暴露期间动物的移动)中的随机和系统变化对类似SPE辐射暴露的剂量分布及后续生物学效应的影响。本研究中开发并验证的软件是一种极其重要的新工具,它能够整合计算和生物学建模,以评估暴露于不均匀的类似SPE辐射剂量分布的生物学结果,并且在其他环境和治疗性暴露模拟中具有潜在应用。