Suppr超能文献

作为关系框架的层次分类。

Hierarchical classification as relational framing.

作者信息

Slattery Brian, Stewart Ian

机构信息

National University of Ireland, Galway.

出版信息

J Exp Anal Behav. 2014 Jan;101(1):61-75. doi: 10.1002/jeab.63. Epub 2013 Dec 6.

Abstract

The purpose of this study was to model hierarchical classification as contextually controlled, generalized relational responding or relational framing. In Experiment 1, a training procedure involving nonarbitrarily related multidimensional stimuli was used to establish two arbitrary shapes as contextual cues for 'member of' and 'includes' relational responding, respectively. Subsequently those cues were used to establish a network of arbitrary stimuli in particular hierarchical relations with each other, and then test for derivation of further untrained hierarchical relations as well as for transformation of functions. Resultant patterns of relational framing showed properties of transitive class containment, asymmetrical class containment, and unilateral property induction, consistent with conceptions of hierarchical classification as described within the cognitive developmental literature. Experiment 2 extended the basic model by using "fuzzy category" stimuli and providing a better controlled test of transformation of functions. Limitations and future research directions are discussed.

摘要

本研究的目的是将层次分类建模为情境控制的、广义的关系反应或关系框架。在实验1中,采用了一种涉及非任意相关的多维刺激的训练程序,分别将两个任意形状作为“……的成员”和“包括”关系反应的情境线索。随后,这些线索被用于建立一个相互之间具有特定层次关系的任意刺激网络,然后测试进一步未经训练的层次关系的推导以及功能的转换。关系框架的结果模式显示出传递类包含、不对称类包含和单边属性归纳的特性,这与认知发展文献中所描述的层次分类概念一致。实验2通过使用“模糊类别”刺激扩展了基本模型,并对功能转换进行了更好控制的测试。讨论了局限性和未来的研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验